Integro-differential-difference equations associated with the Dunkl operator and entire functions
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 4, page 699-725
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSalem, Néjib Ben, and Kallel, Samir. "Integro-differential-difference equations associated with the Dunkl operator and entire functions." Commentationes Mathematicae Universitatis Carolinae 45.4 (2004): 699-725. <http://eudml.org/doc/249332>.
@article{Salem2004,
abstract = {In this work we consider the Dunkl operator on the complex plane, defined by \[ \mathcal \{D\}\_k f(z)=\frac\{d\}\{dz\}f(z)+k\frac\{f(z)-f(-z)\}\{z\}, k\ge 0. \]
We define a convolution product associated with $\mathcal \{D\}_k$ denoted $\ast _k$ and we study the integro-differential-difference equations of the type $\mu \ast _k f=\sum _\{n=0\}^\{\infty \}a_\{n,k\}\mathcal \{D\}^n_k f$, where $(a_\{n,k\})$ is a sequence of complex numbers and $\mu $ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type.},
author = {Salem, Néjib Ben, Kallel, Samir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Dunkl operator; Fourier-Dunkl transform; entire function of exponential type; integro-differential-difference equation; Dunkl operator; Fourier-Dunkl transform; entire function of exponential type; integro-differential-difference equation},
language = {eng},
number = {4},
pages = {699-725},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Integro-differential-difference equations associated with the Dunkl operator and entire functions},
url = {http://eudml.org/doc/249332},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Salem, Néjib Ben
AU - Kallel, Samir
TI - Integro-differential-difference equations associated with the Dunkl operator and entire functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 4
SP - 699
EP - 725
AB - In this work we consider the Dunkl operator on the complex plane, defined by \[ \mathcal {D}_k f(z)=\frac{d}{dz}f(z)+k\frac{f(z)-f(-z)}{z}, k\ge 0. \]
We define a convolution product associated with $\mathcal {D}_k$ denoted $\ast _k$ and we study the integro-differential-difference equations of the type $\mu \ast _k f=\sum _{n=0}^{\infty }a_{n,k}\mathcal {D}^n_k f$, where $(a_{n,k})$ is a sequence of complex numbers and $\mu $ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type.
LA - eng
KW - Dunkl operator; Fourier-Dunkl transform; entire function of exponential type; integro-differential-difference equation; Dunkl operator; Fourier-Dunkl transform; entire function of exponential type; integro-differential-difference equation
UR - http://eudml.org/doc/249332
ER -
References
top- Ben Salem N., Kallel S., Mean-periodic functions associated with the Dunkl operators, Integral Transforms Spec. Funct. 15 2 155-179 (2004). (2004) Zbl1130.42009MR2053408
- Ben Salem N., Masmoudi W., Integro-differential equations associated with the Bessel operator on the complex domain, C.R. Math. Rep. Acad. Sci. Canada 18 6 257-262 (1996). (1996) Zbl0880.45008MR1441647
- Boas R.P., Jr., Entire Functions, Academic Press, New York, 1954. Zbl0293.30026MR0068627
- Dunkl C.F., Differential difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 167-183 (1989). (1989) Zbl0652.33004MR0951883
- Dunkl C.F., Integral kernels with reflection group invariance, Canad. J. Math. 43 1213-1227 (1991). (1991) Zbl0827.33010MR1145585
- de Jeu M.F.E., The Dunkl transform, Invent. Math. 113 147-162 (1993). (1993) Zbl0789.33007MR1223227
- Martineau A., Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 1-64 (1963). (1963) Zbl0124.31804MR0159220
- Mourou M.A., Taylor series associated with a differential-difference operator on the real line, J. Comput. Appl. Math. 153 343-354 (2003). (2003) Zbl1028.34058MR1985705
- Mugler D.H., Convolution, differential equations, and entire function of exponential type, Trans. Amer. Math. Soc. 216 145-187 (1976). (1976) MR0387587
- Rosenblum M., Generalized Hermite Polynomials and the Bose-like Oscillator Calculus, in: Operator Theory: Advances and Applications, vol. 73, Birkhäuser Verlag, Basel, 1994, pp.369-396. MR1320555
- Rösler M., Bessel-type signed hypergroups on , Probability Measures on Groups and Related Structures XI, Proceedings, Oberwollach, 1994 (H. Heyer and A. Mukherjea, Eds.), World Sci. Publishing, Singapore, 1995. MR1414942
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.