On -sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 1, page 91-100
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aubin T., Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998. Zbl0896.53003MR1636569
- Braverman M., Milatovic O., Shubin M., Essential self-adjointness of Schrödinger type operators on manifolds, Russian Math. Surveys 57 4 (2002), 641-692. (2002) Zbl1052.58027MR1942115
- Kato T., Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148. (1972) MR0333833
- Kato T., A second look at the essential selfadjointness of the Schrödinger operators, Physical reality and mathematical description, Reidel, Dordrecht, 1974, pp.193-201. MR0477431
- Kato T., On some Schrödinger operators with a singular complex potential, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 5 (1978), 105-114. (1978) Zbl0376.47021MR0492961
- Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980. Zbl0836.47009
- Milatovic O., Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry, Electron. J. Differential Equations, No. 64 (2003), 8pp (electronic). Zbl1037.58013MR1993772
- Reed M., Simon B., Methods of Modern Mathematical Physics I, II: Functional Analysis. Fourier Analysis, Self-adjointness, Academic Press, New York e.a., 1975. MR0751959
- Shubin M.A., Spectral theory of elliptic operators on noncompact manifolds, Astérisque no. 207 (1992), 35-108. MR1205177
- Taylor M., Partial Differential Equations II: Qualitative Studies of Linear Equations, Springer-Verlag, New York e.a., 1996. MR1395149