On some Schrödinger operators with a singular complex potential

Tosio Kato

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)

  • Volume: 5, Issue: 1, page 105-114
  • ISSN: 0391-173X

How to cite

top

Kato, Tosio. "On some Schrödinger operators with a singular complex potential." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (1978): 105-114. <http://eudml.org/doc/83770>.

@article{Kato1978,
author = {Kato, Tosio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {105-114},
publisher = {Scuola normale superiore},
title = {On some Schrödinger operators with a singular complex potential},
url = {http://eudml.org/doc/83770},
volume = {5},
year = {1978},
}

TY - JOUR
AU - Kato, Tosio
TI - On some Schrödinger operators with a singular complex potential
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 1
SP - 105
EP - 114
LA - eng
UR - http://eudml.org/doc/83770
ER -

References

top
  1. [1] E. Nelson, Feynman integrals and the Schrödinger equation, J. Mathematical Physics, 5 (1964), pp. 332-343. Zbl0133.22905MR161189
  2. [2] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), pp. 135-148. Zbl0246.35025MR333833
  3. [3] L. Hörmander - J.L. Lions, Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand., 4 (1956), pp. 259-270. Zbl0078.28003MR87848
  4. [4] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, fasc. 1 (1965), pp. 189-258. Zbl0151.15401MR192177
  5. [5] T. Kato, Perturbation theory for linear operators, Second Edition, Springer, 1976 Zbl0342.47009MR407617
  6. [6] P.R. Chernoff, Product formulas, nonlinear semigroups, and addition of unbounded operators, Mem. Amer. Math. Soc., 140 (1974). Zbl0283.47041MR417851
  7. [7] T. Kato, Trotter's product formula for an arbitrary pair of selfadjoint contraction semigroups, Advances in Math. (to appear). Zbl0461.47018
  8. [8] T. Kato, A second look at the essential selfadjointness of the Schrödinger operators, Physical Reality and Mathematical Description, D. Reidel Publishing Co., 1974, pp. 193-201. Zbl0328.47023MR477431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.