Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity q 2

Luisa Fattorusso

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 1, page 73-90
  • ISSN: 0010-2628

Abstract

top
Let Ω be a bounded open subset of n , let X = ( x , t ) be a point of n × N . In the cylinder Q = Ω × ( - T , 0 ) , T > 0 , we deduce the local differentiability result u L 2 ( - a , 0 , H 2 ( B ( σ ) , N ) ) H 1 ( - a , 0 , L 2 ( B ( σ ) , N ) ) for the solutions u of the class L q ( - T , 0 , H 1 , q ( Ω , N ) ) C 0 , λ ( Q ¯ , N ) ( 0 < λ < 1 , N integer 1 ) of the nonlinear parabolic system - i = 1 n D i a i ( X , u , D u ) + u t = B 0 ( X , u , D u ) with quadratic growth and nonlinearity q 2 . This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions u belonging to W 1 , q C 0 , λ .

How to cite

top

Fattorusso, Luisa. "Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 73-90. <http://eudml.org/doc/249350>.

@article{Fattorusso2004,
abstract = {Let $\Omega $ be a bounded open subset of $\mathbb \{R\}^n$, let $X=(x,t)$ be a point of $\mathbb \{R\}^n\times \mathbb \{R\}^N$. In the cylinder $Q=\Omega \times (-T,0)$, $T>0$, we deduce the local differentiability result \[ u \in L^2(-a,0,H^2(B(\sigma ),\mathbb \{R\}^N))\cap H^1(-a,0,L^2(B(\sigma ),\mathbb \{R\}^N)) \] for the solutions $u$ of the class $L^q(-T,0,H^\{1,q\}(\Omega ,\mathbb \{R\}^N))\cap C^\{0,\lambda \}(\bar\{Q\},\mathbb \{R\}^N)$ ($0<\lambda <1$, $N$ integer $\ge 1$) of the nonlinear parabolic system \[ -\sum \_\{i=1\}^n D\_i a^i (X,u,Du)+\dfrac\{\partial u\}\{\partial t\} = B^0(X,u,Du) \] with quadratic growth and nonlinearity $q\ge 2$. This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions $u$ belonging to $W^\{1,q\}\cap C^\{0,\lambda \}$.},
author = {Fattorusso, Luisa},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differentiability of weak solution; parabolic systems; nonlinearity with $q>2$; differentiability of weak solution; parabolic systems; nonlinearity with ; local differentiability; interpolation theory; imbedding theorem of Gagliardo-Nirenberg type},
language = {eng},
number = {1},
pages = {73-90},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$},
url = {http://eudml.org/doc/249350},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Fattorusso, Luisa
TI - Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 73
EP - 90
AB - Let $\Omega $ be a bounded open subset of $\mathbb {R}^n$, let $X=(x,t)$ be a point of $\mathbb {R}^n\times \mathbb {R}^N$. In the cylinder $Q=\Omega \times (-T,0)$, $T>0$, we deduce the local differentiability result \[ u \in L^2(-a,0,H^2(B(\sigma ),\mathbb {R}^N))\cap H^1(-a,0,L^2(B(\sigma ),\mathbb {R}^N)) \] for the solutions $u$ of the class $L^q(-T,0,H^{1,q}(\Omega ,\mathbb {R}^N))\cap C^{0,\lambda }(\bar{Q},\mathbb {R}^N)$ ($0<\lambda <1$, $N$ integer $\ge 1$) of the nonlinear parabolic system \[ -\sum _{i=1}^n D_i a^i (X,u,Du)+\dfrac{\partial u}{\partial t} = B^0(X,u,Du) \] with quadratic growth and nonlinearity $q\ge 2$. This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions $u$ belonging to $W^{1,q}\cap C^{0,\lambda }$.
LA - eng
KW - differentiability of weak solution; parabolic systems; nonlinearity with $q>2$; differentiability of weak solution; parabolic systems; nonlinearity with ; local differentiability; interpolation theory; imbedding theorem of Gagliardo-Nirenberg type
UR - http://eudml.org/doc/249350
ER -

References

top
  1. Campanato S., Sistemi ellittici in forma di divergenza. Regolarità all'interno, Quaderni Scuola Norm. Sup. Pisa, 1980. MR0668196
  2. Campanato S., Differentiability of the solutions of nonlinear elliptic systems with natural growth, Ann. Mat. Pura Appl. (4) 131 (1982). (1982) Zbl0493.35022MR0681558
  3. Fattorusso L., Sulla differenziabilità delle soluzioni di sistemi parabolici non lineari del secondo ordine ad andamento quadratico, Boll. Un. Mat. Ital. B (7) 1 (1987), 741-764. (1987) 
  4. Fattorusso L., Marino M., Differenziabilità locale per sistemi parabolici non lineari del secondo ordine con non linearità q 2 , Ricerche Mat. 41 1 (1992), 89-112. (1992) MR1305346
  5. Fattorusso L., Differenziabilità locale per sistemi parabolici non lineari del secondo ordine con non linearità 1 < q < 2 , Matematiche (Catania) 48 2 (1993), 331-347 (1994). (1993) 
  6. Marino M., Maugeri M., Differentiability of weak solutions of nonlinear parabolic systems with quadratic growth, Matematiche (Catania) 50 (1995), 2 361-377. (1995) Zbl0907.35034MR1414643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.