A fundamental estimate and an inequality of Caccioppoli's type for nonlinear parabolic systems of higher order
A generalization of the well-known weak maximum principle is established for a class of quasilinear strongly coupled parabolic systems with leading terms of p-Laplacian type.
In this paper a model for the recovery of human and economic activities in a region, which underwent a serious disaster, is proposed. The model treats the case that the disaster region has an industrial collaboration with a non-disaster region in the production system and, especially, depends upon each other in technological development. The economic growth model is based on the classical theory of R. M. Solow (1956), and the full model is described as a nonlinear system of ordinary differential...
This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems. The reaction-diffusion...
A mathematical model of infiltrative tumour growth is investigated taking into account transitions between two possible states of malignant cells: proliferation and migration. These transitions are considered to depend on oxygen level in a threshold manner where high oxygen concentration allows cell proliferation, while concentration below a certain critical value induces cell migration. The infiltrative tumour spreading rate dependence on model parameters is obtained. It is shown that the tumour...
Dans un espace biharmonique, on définit un balayage de couples de mesures et, en particulier, on retrouve les trois mesures du problème de Riquier. Une de ces mesures n’étant pas harmonique, son étude présente un certain intérêt. On établit, dans ce cadre, des inégalités de type Harnack et on introduit les fonctions hyperharmoniques d’ordre 2. Le problème de la construction d’un espace biharmonique à partir de deux espaces harmoniques est aussi étudié. Enfin, on donne des applications de la théorie...
In this paper we consider general second order, symmetric and strongly elliptic parabolic systems with real valued and constant coefficients in the setting of a class of time-varying, non-smooth infinite cylindersΩ = {(x0,x,t) ∈ R x Rn-1 x R: x0 > A(x,t)}.We prove solvability of Dirichlet, Neumann as well as regularity type problems with data in Lp and Lp1,1/2 (the parabolic Sobolev space having tangential (spatial) gradients and half a time derivative in Lp) for p ∈ (2 − ε, 2 + ε) assuming...
We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order with discontinuous principal coefficients belonging to . By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order .
A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form , one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.
Let be a bounded open subset of , let be a point of . In the cylinder , , we deduce the local differentiability result for the solutions of the class (, integer ) of the nonlinear parabolic system with quadratic growth and nonlinearity . This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions belonging to .
Für die Lösungen seminlinearer parabolischer Differentialgleichungen werden Einschliessungsaussagen hergeleitet. Hierbei werden Aussagen zur Stabilität von Lösungen ermittelt. Die Resultate werden am Beispiel der Fitzhugh-Nagumo Gleichungen diskutiert.