Embedding -homogeneous latin trades into abelian -groups
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 2, page 191-212
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCavenagh, Nicholas J.. "Embedding $3$-homogeneous latin trades into abelian $2$-groups." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 191-212. <http://eudml.org/doc/249361>.
@article{Cavenagh2004,
abstract = {Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T^\{\prime \}$ with $T^\{\prime \}\cap T=\emptyset $ such that $(L\setminus T)\cup T^\{\prime \}$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.},
author = {Cavenagh, Nicholas J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {latin square; latin trade; abelian $2$-group; Latin square; Latin trade; abelian 2-group},
language = {eng},
number = {2},
pages = {191-212},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Embedding $3$-homogeneous latin trades into abelian $2$-groups},
url = {http://eudml.org/doc/249361},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Cavenagh, Nicholas J.
TI - Embedding $3$-homogeneous latin trades into abelian $2$-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 191
EP - 212
AB - Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T^{\prime }$ with $T^{\prime }\cap T=\emptyset $ such that $(L\setminus T)\cup T^{\prime }$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.
LA - eng
KW - latin square; latin trade; abelian $2$-group; Latin square; Latin trade; abelian 2-group
UR - http://eudml.org/doc/249361
ER -
References
top- Adams P., Bean R., Khodkar A., A census of critical sets in the latin squares of order at most six, Ars Combin. 68 (2003), 203-223. (2003) Zbl1072.05511MR1991049
- Adams P., Khodkar A., Smallest critical sets for the latin squares of order six and seven, J. Combin. Math. Combin. Computing. 67 (2001), 225-237. (2001) MR1834445
- Bates J.A., van Rees G.H.J., The size of the smallest strong critical set in a latin square, Ars Combin. 53 (1999), 73-83. (1999) MR1724489
- Bate J.A., van Rees G.H.J., Minimal and near-minimal critical sets in back circulant latin squares, Australas. J. Combinatorics 27 (2003), 47-62. (2003) Zbl1024.05014MR1955387
- Cavenagh N.J., Latin trade algorithms and the smallest critical set in a latin square, J. Autom. Lang. Combin. 8 (2003), 567-578. (2003) Zbl1052.05019MR2069074
- Cavenagh N.J., The size of the smallest latin trade in a back circulant latin square, Bull. Inst. Combin. Appl. 38 (2003), 11-18. (2003) Zbl1046.05015MR1977014
- Cavenagh N.J., The size of the smallest critical set in the back circulant latin square, submitted.
- Cavenagh N.J., Donovan D., Drápal A., -homogeneous latin trades, submitted.
- Conway J.C., Sloane N.J., Sphere Packings, Lattices and Groups, New York, Springer-Verlag, 1998. Zbl0915.52003
- Dénes J., Keedwell A.D., Latin Squares and Their Applications, English Universities Press, London, 1974. MR0351850
- Donovan D., Howse A., Adams P., A discussion of latin interchanges, J. Comb. Math. Comb. Comput. 23 (1997), 161-182. (1997) Zbl0867.05010MR1432756
- Donovan D., Mahmoodian E.S., An algorithm for writing any latin interchange as the sum of intercalates, Bull. Inst. Combin. Appl. 34 (2002), 90-98. (2002) MR1880972
- Drápal A., On a planar construction of quasigroups, Czechoslovak Math. J. 41 (1991), 538-548. (1991) MR1117806
- Drápal A., Hamming distances of groups and quasi-groups, Discrete Math. 235 (2001), 189-197. (2001) Zbl0986.20065MR1829848
- Drápal A., Geometry of latin trades, manuscript circulated at the conference Loops'03, Prague 2003.
- Drápal, Kepka T., Exchangeable Groupoids I, Acta Univ. Carolinae - Math. Phys. 24 (1983), 57-72. (1983) MR0733686
- Drápal, Kepka T., Exchangeable Groupoids II, Acta Univ. Carolinae - Math. Phys. 26 (1985), 3-9. (1985) MR0830261
- Drápal, Kepka T., On a distance of groups and latin squares, Comment. Math. Univ. Carolinae 30 (1989), 621-626. (1989) MR1045889
- Hedayat A.S., The theory of trade-off for -designs, in ``Coding theory and design theory, Part II'', IMA Vol. Math. Appl. 21, Springer, NY, 1990. Zbl0721.05008MR1056530
- Horak P., Aldred R.E.L., Fleischner H., Completing Latin squares: critical sets, J. Combin. Des. 10 (2002), 419-432. (2002) Zbl1025.05011MR1932121
- Keedwell A.D., Critical sets and critical partial latin squares, in ``Proc. Third China-USA International Conf. on Graph Theory, Combinatorics, Algorithms and Applications'', World Sci. Publishing, NJ, 1994. MR1313960
- Keedwell A.D., Critical sets for latin squares, graphs and block designs: A survey, Congr. Numer. 113 (1996), 231-245. (1996) Zbl0955.05019MR1393712
- Khodkar A., On smallest critical sets for the elementary abelian -group, Utilitas Math. 54 (1998), 45-50. (1998) Zbl0922.05012MR1658157
- Lütkepohl H., Handbook of Matrices, Chichester, John Wiley and Sons, 1996. MR1433592
- Street A.P., Trades and defining sets, in: C.J. Colbourn and J.H. Dinitz, Eds., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., 1996, pp.474-478. Zbl0847.05011
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.