Embedding 3 -homogeneous latin trades into abelian 2 -groups

Nicholas J. Cavenagh

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 2, page 191-212
  • ISSN: 0010-2628

Abstract

top
Let T be a partial latin square and L be a latin square with T L . We say that T is a latin trade if there exists a partial latin square T ' with T ' T = such that ( L T ) T ' is a latin square. A k -homogeneous latin trade is one which intersects each row, each column and each entry either 0 or k times. In this paper, we show the existence of 3 -homogeneous latin trades in abelian 2 -groups.

How to cite

top

Cavenagh, Nicholas J.. "Embedding $3$-homogeneous latin trades into abelian $2$-groups." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 191-212. <http://eudml.org/doc/249361>.

@article{Cavenagh2004,
abstract = {Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T^\{\prime \}$ with $T^\{\prime \}\cap T=\emptyset $ such that $(L\setminus T)\cup T^\{\prime \}$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.},
author = {Cavenagh, Nicholas J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {latin square; latin trade; abelian $2$-group; Latin square; Latin trade; abelian 2-group},
language = {eng},
number = {2},
pages = {191-212},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Embedding $3$-homogeneous latin trades into abelian $2$-groups},
url = {http://eudml.org/doc/249361},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Cavenagh, Nicholas J.
TI - Embedding $3$-homogeneous latin trades into abelian $2$-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 191
EP - 212
AB - Let $T$ be a partial latin square and $L$ be a latin square with $T\subseteq L$. We say that $T$ is a latin trade if there exists a partial latin square $T^{\prime }$ with $T^{\prime }\cap T=\emptyset $ such that $(L\setminus T)\cup T^{\prime }$ is a latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry either $0$ or $k$ times. In this paper, we show the existence of $3$-homogeneous latin trades in abelian $2$-groups.
LA - eng
KW - latin square; latin trade; abelian $2$-group; Latin square; Latin trade; abelian 2-group
UR - http://eudml.org/doc/249361
ER -

References

top
  1. Adams P., Bean R., Khodkar A., A census of critical sets in the latin squares of order at most six, Ars Combin. 68 (2003), 203-223. (2003) Zbl1072.05511MR1991049
  2. Adams P., Khodkar A., Smallest critical sets for the latin squares of order six and seven, J. Combin. Math. Combin. Computing. 67 (2001), 225-237. (2001) MR1834445
  3. Bates J.A., van Rees G.H.J., The size of the smallest strong critical set in a latin square, Ars Combin. 53 (1999), 73-83. (1999) MR1724489
  4. Bate J.A., van Rees G.H.J., Minimal and near-minimal critical sets in back circulant latin squares, Australas. J. Combinatorics 27 (2003), 47-62. (2003) Zbl1024.05014MR1955387
  5. Cavenagh N.J., Latin trade algorithms and the smallest critical set in a latin square, J. Autom. Lang. Combin. 8 (2003), 567-578. (2003) Zbl1052.05019MR2069074
  6. Cavenagh N.J., The size of the smallest latin trade in a back circulant latin square, Bull. Inst. Combin. Appl. 38 (2003), 11-18. (2003) Zbl1046.05015MR1977014
  7. Cavenagh N.J., The size of the smallest critical set in the back circulant latin square, submitted. 
  8. Cavenagh N.J., Donovan D., Drápal A., 3 -homogeneous latin trades, submitted. 
  9. Conway J.C., Sloane N.J., Sphere Packings, Lattices and Groups, New York, Springer-Verlag, 1998. Zbl0915.52003
  10. Dénes J., Keedwell A.D., Latin Squares and Their Applications, English Universities Press, London, 1974. MR0351850
  11. Donovan D., Howse A., Adams P., A discussion of latin interchanges, J. Comb. Math. Comb. Comput. 23 (1997), 161-182. (1997) Zbl0867.05010MR1432756
  12. Donovan D., Mahmoodian E.S., An algorithm for writing any latin interchange as the sum of intercalates, Bull. Inst. Combin. Appl. 34 (2002), 90-98. (2002) MR1880972
  13. Drápal A., On a planar construction of quasigroups, Czechoslovak Math. J. 41 (1991), 538-548. (1991) MR1117806
  14. Drápal A., Hamming distances of groups and quasi-groups, Discrete Math. 235 (2001), 189-197. (2001) Zbl0986.20065MR1829848
  15. Drápal A., Geometry of latin trades, manuscript circulated at the conference Loops'03, Prague 2003. 
  16. Drápal, Kepka T., Exchangeable Groupoids I, Acta Univ. Carolinae - Math. Phys. 24 (1983), 57-72. (1983) MR0733686
  17. Drápal, Kepka T., Exchangeable Groupoids II, Acta Univ. Carolinae - Math. Phys. 26 (1985), 3-9. (1985) MR0830261
  18. Drápal, Kepka T., On a distance of groups and latin squares, Comment. Math. Univ. Carolinae 30 (1989), 621-626. (1989) MR1045889
  19. Hedayat A.S., The theory of trade-off for t -designs, in ``Coding theory and design theory, Part II'', IMA Vol. Math. Appl. 21, Springer, NY, 1990. Zbl0721.05008MR1056530
  20. Horak P., Aldred R.E.L., Fleischner H., Completing Latin squares: critical sets, J. Combin. Des. 10 (2002), 419-432. (2002) Zbl1025.05011MR1932121
  21. Keedwell A.D., Critical sets and critical partial latin squares, in ``Proc. Third China-USA International Conf. on Graph Theory, Combinatorics, Algorithms and Applications'', World Sci. Publishing, NJ, 1994. MR1313960
  22. Keedwell A.D., Critical sets for latin squares, graphs and block designs: A survey, Congr. Numer. 113 (1996), 231-245. (1996) Zbl0955.05019MR1393712
  23. Khodkar A., On smallest critical sets for the elementary abelian 2 -group, Utilitas Math. 54 (1998), 45-50. (1998) Zbl0922.05012MR1658157
  24. Lütkepohl H., Handbook of Matrices, Chichester, John Wiley and Sons, 1996. MR1433592
  25. Street A.P., Trades and defining sets, in: C.J. Colbourn and J.H. Dinitz, Eds., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., 1996, pp.474-478. Zbl0847.05011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.