A uniqueness result for 3 -homogeneous latin trades

Nicholas J. Cavenagh

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 2, page 337-358
  • ISSN: 0010-2628

Abstract

top
A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square. A k -homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either 0 or k times. In this paper, we show that a construction given by Cavenagh, Donovan and Drápal for 3 -homogeneous latin trades in fact classifies every minimal 3 -homogeneous latin trade. We in turn classify all 3 -homogeneous latin trades. A corollary is that any 3 -homogeneous latin trade may be partitioned into three, disjoint, partial transversals.

How to cite

top

Cavenagh, Nicholas J.. "A uniqueness result for $3$-homogeneous latin trades." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 337-358. <http://eudml.org/doc/249888>.

@article{Cavenagh2006,
abstract = {A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either $0$ or $k$ times. In this paper, we show that a construction given by Cavenagh, Donovan and Drápal for $3$-homogeneous latin trades in fact classifies every minimal $3$-homogeneous latin trade. We in turn classify all $3$-homogeneous latin trades. A corollary is that any $3$-homogeneous latin trade may be partitioned into three, disjoint, partial transversals.},
author = {Cavenagh, Nicholas J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {latin square; latin trade; critical set; Latin square; Latin trade; critical set; transversal},
language = {eng},
number = {2},
pages = {337-358},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A uniqueness result for $3$-homogeneous latin trades},
url = {http://eudml.org/doc/249888},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Cavenagh, Nicholas J.
TI - A uniqueness result for $3$-homogeneous latin trades
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 337
EP - 358
AB - A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either $0$ or $k$ times. In this paper, we show that a construction given by Cavenagh, Donovan and Drápal for $3$-homogeneous latin trades in fact classifies every minimal $3$-homogeneous latin trade. We in turn classify all $3$-homogeneous latin trades. A corollary is that any $3$-homogeneous latin trade may be partitioned into three, disjoint, partial transversals.
LA - eng
KW - latin square; latin trade; critical set; Latin square; Latin trade; critical set; transversal
UR - http://eudml.org/doc/249888
ER -

References

top
  1. Bate J.A., van Rees G.H.J., Minimal and near-minimal critical sets in back circulant latin squares, Australas. J. Combin. 27 (2003), 47-61. (2003) Zbl1024.05014MR1955387
  2. Cavenagh N.J., Embedding 3 -homogeneous latin trades into abelian 2 -groups, Comment. Math. Univ. Carolin. 45 (2004), 191-212. (2004) Zbl1099.05503MR2075269
  3. Cavenagh N.J., The size of the smallest latin trade in a back circulant latin square, Bull. Inst. Combin. Appl. 38 (2003), 11-18. (2003) Zbl1046.05015MR1977014
  4. Cavenagh N.J., Donovan D., Drápal A., 3 -homogeneous latin trades, Discrete Math. 300 (2005), 57-70. (2005) Zbl1073.05012MR2170114
  5. Cavenagh N.J., Donovan D., Drápal A., 4 -homogeneous latin trades, Australas. J. Combin. 32 (2005), 285-303. (2005) Zbl1074.05020MR2139816
  6. Cooper J., Donovan D., Seberry J., Latin squares and critical sets of minimal size, Australas. J. Combin. 4 (1991), 113-120. (1991) Zbl0759.05017MR1129273
  7. Donovan D., Howse A., Adams P., A discussion of latin interchanges, J. Combin. Math. Combin. Comput. 23 (1997), 161-182. (1997) Zbl0867.05010MR1432756
  8. Donovan D., Mahmoodian E.S., An algorithm for writing any latin interchange as the sum of intercalates, Bull. Inst. Combin. Appl. 34 (2002), 90-98. (2002) MR1880972
  9. Drápal A., On a planar construction of quasigroups, Czechoslovak Math. J. 41 (1991), 538-548. (1991) MR1117806
  10. Drápal A., Hamming distances of groups and quasi-groups, Discrete Math. 235 (2001), 189-197. (2001) Zbl0986.20065MR1829848
  11. Drápal A., Geometry of latin trades, manuscript circulated at the conference Loops'03, Prague, 2003. 
  12. Drápal A., Kepka T., Exchangeable Groupoids I, Acta Univ. Carolin. Math. Phys. 24 (1983), 57-72. (1983) MR0733686
  13. Drápal A., Kepka T., On a distance of groups and latin squares, Comment. Math. Univ. Carolin. 30 (1989), 621-626. (1989) MR1045889
  14. Fu C.-M., Fu H.-L., The intersection problem of latin squares, J. Combin. Inform. System Sci. 15 (1990), 89-95. (1990) Zbl0743.05009MR1125351
  15. Horak P., Aldred R.E.L., Fleischner H., Completing Latin squares: critical sets, J. Combin. Designs 10 (2002), 419-432. (2002) Zbl1025.05011MR1932121
  16. Keedwell A.D., Critical sets for latin squares, graphs and block designs: A survey, Congr. Numer. 113 (1996), 231-245. (1996) Zbl0955.05019MR1393712
  17. Keedwell A.D., Critical sets in latin squares and related matters: an update, Util. Math. 65 (2004), 97-131. (2004) Zbl1053.05019MR2048415
  18. Khosrovshahi G.B., Maimani H.R., Torabi R., On trades: an update, Discrete Appl. Math. 95 (1999), 361-376. (1999) Zbl0935.05015MR1708848
  19. Street A.P., Trades and defining sets, in: C.J. Colbourn and J.H. Dinitz, ed., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., USA, 1996, 474-478. Zbl0847.05011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.