A uniqueness result for -homogeneous latin trades
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 2, page 337-358
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCavenagh, Nicholas J.. "A uniqueness result for $3$-homogeneous latin trades." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 337-358. <http://eudml.org/doc/249888>.
@article{Cavenagh2006,
abstract = {A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either $0$ or $k$ times. In this paper, we show that a construction given by Cavenagh, Donovan and Drápal for $3$-homogeneous latin trades in fact classifies every minimal $3$-homogeneous latin trade. We in turn classify all $3$-homogeneous latin trades. A corollary is that any $3$-homogeneous latin trade may be partitioned into three, disjoint, partial transversals.},
author = {Cavenagh, Nicholas J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {latin square; latin trade; critical set; Latin square; Latin trade; critical set; transversal},
language = {eng},
number = {2},
pages = {337-358},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A uniqueness result for $3$-homogeneous latin trades},
url = {http://eudml.org/doc/249888},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Cavenagh, Nicholas J.
TI - A uniqueness result for $3$-homogeneous latin trades
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 337
EP - 358
AB - A latin trade is a subset of a latin square which may be replaced with a disjoint mate to obtain a new latin square. A $k$-homogeneous latin trade is one which intersects each row, each column and each entry of the latin square either $0$ or $k$ times. In this paper, we show that a construction given by Cavenagh, Donovan and Drápal for $3$-homogeneous latin trades in fact classifies every minimal $3$-homogeneous latin trade. We in turn classify all $3$-homogeneous latin trades. A corollary is that any $3$-homogeneous latin trade may be partitioned into three, disjoint, partial transversals.
LA - eng
KW - latin square; latin trade; critical set; Latin square; Latin trade; critical set; transversal
UR - http://eudml.org/doc/249888
ER -
References
top- Bate J.A., van Rees G.H.J., Minimal and near-minimal critical sets in back circulant latin squares, Australas. J. Combin. 27 (2003), 47-61. (2003) Zbl1024.05014MR1955387
- Cavenagh N.J., Embedding -homogeneous latin trades into abelian -groups, Comment. Math. Univ. Carolin. 45 (2004), 191-212. (2004) Zbl1099.05503MR2075269
- Cavenagh N.J., The size of the smallest latin trade in a back circulant latin square, Bull. Inst. Combin. Appl. 38 (2003), 11-18. (2003) Zbl1046.05015MR1977014
- Cavenagh N.J., Donovan D., Drápal A., -homogeneous latin trades, Discrete Math. 300 (2005), 57-70. (2005) Zbl1073.05012MR2170114
- Cavenagh N.J., Donovan D., Drápal A., -homogeneous latin trades, Australas. J. Combin. 32 (2005), 285-303. (2005) Zbl1074.05020MR2139816
- Cooper J., Donovan D., Seberry J., Latin squares and critical sets of minimal size, Australas. J. Combin. 4 (1991), 113-120. (1991) Zbl0759.05017MR1129273
- Donovan D., Howse A., Adams P., A discussion of latin interchanges, J. Combin. Math. Combin. Comput. 23 (1997), 161-182. (1997) Zbl0867.05010MR1432756
- Donovan D., Mahmoodian E.S., An algorithm for writing any latin interchange as the sum of intercalates, Bull. Inst. Combin. Appl. 34 (2002), 90-98. (2002) MR1880972
- Drápal A., On a planar construction of quasigroups, Czechoslovak Math. J. 41 (1991), 538-548. (1991) MR1117806
- Drápal A., Hamming distances of groups and quasi-groups, Discrete Math. 235 (2001), 189-197. (2001) Zbl0986.20065MR1829848
- Drápal A., Geometry of latin trades, manuscript circulated at the conference Loops'03, Prague, 2003.
- Drápal A., Kepka T., Exchangeable Groupoids I, Acta Univ. Carolin. Math. Phys. 24 (1983), 57-72. (1983) MR0733686
- Drápal A., Kepka T., On a distance of groups and latin squares, Comment. Math. Univ. Carolin. 30 (1989), 621-626. (1989) MR1045889
- Fu C.-M., Fu H.-L., The intersection problem of latin squares, J. Combin. Inform. System Sci. 15 (1990), 89-95. (1990) Zbl0743.05009MR1125351
- Horak P., Aldred R.E.L., Fleischner H., Completing Latin squares: critical sets, J. Combin. Designs 10 (2002), 419-432. (2002) Zbl1025.05011MR1932121
- Keedwell A.D., Critical sets for latin squares, graphs and block designs: A survey, Congr. Numer. 113 (1996), 231-245. (1996) Zbl0955.05019MR1393712
- Keedwell A.D., Critical sets in latin squares and related matters: an update, Util. Math. 65 (2004), 97-131. (2004) Zbl1053.05019MR2048415
- Khosrovshahi G.B., Maimani H.R., Torabi R., On trades: an update, Discrete Appl. Math. 95 (1999), 361-376. (1999) Zbl0935.05015MR1708848
- Street A.P., Trades and defining sets, in: C.J. Colbourn and J.H. Dinitz, ed., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., USA, 1996, 474-478. Zbl0847.05011
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.