On weakly projective and weakly injective modules
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 389-402
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSaleh, Mohammad. "On weakly projective and weakly injective modules." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 389-402. <http://eudml.org/doc/249362>.
@article{Saleh2004,
abstract = {The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module $M$, there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly injective in $\sigma [M]$, for any $N\in \sigma [M]$. Similarly, if $M$ is projective and right perfect in $\sigma [M]$, then there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly projective in $\sigma [M]$, for any $N\in \sigma [M]$. Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes $\mathcal \{M\}$ of modules in $\sigma [M]$, we study when direct sums of modules from $\mathcal \{M\}$ satisfy property $\mathbb \{P\}$ in $\sigma [M]$. In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules.},
author = {Saleh, Mohammad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {tight; weakly tight; weakly injective; weakly projective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; weakly projective modules; countably thick modules; locally qfd modules; weakly semisimple modules; injective hulls; projective covers},
language = {eng},
number = {3},
pages = {389-402},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly projective and weakly injective modules},
url = {http://eudml.org/doc/249362},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Saleh, Mohammad
TI - On weakly projective and weakly injective modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 389
EP - 402
AB - The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module $M$, there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly injective in $\sigma [M]$, for any $N\in \sigma [M]$. Similarly, if $M$ is projective and right perfect in $\sigma [M]$, then there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly projective in $\sigma [M]$, for any $N\in \sigma [M]$. Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes $\mathcal {M}$ of modules in $\sigma [M]$, we study when direct sums of modules from $\mathcal {M}$ satisfy property $\mathbb {P}$ in $\sigma [M]$. In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules.
LA - eng
KW - tight; weakly tight; weakly injective; weakly projective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; weakly projective modules; countably thick modules; locally qfd modules; weakly semisimple modules; injective hulls; projective covers
UR - http://eudml.org/doc/249362
ER -
References
top- Albu T., Nastasescu C., Relative Finiteness in Module Theory, Marcel Dekker, 1984. Zbl0556.16001MR0749933
- Al-Huzali A., Jain S.K., López-Permouth S.R., Rings whose cyclics have finite Goldie dimension, J. Algebra 153 (1992), 37-40. (1992) MR1195405
- Berry D., Modules whose cyclic submodules have finite dimension, Canad. Math. Bull. 19 (1976), 1-6. (1976) Zbl0335.16025MR0417244
- Brodskii G., Saleh M., Thuyet L., Wisbauer R., On weak injectivity of direct sums of modules, Vietnam J. Math. 26 (1998), 121-127. (1998) MR1684323
- Brodskii G., Denumerable distributivity, linear compactness and the AB5 condition in modules, Russian Acad. Sci. Dokl. Math. 53 (1996), 76-77. (1996)
- Brodskii G., The Grothendieck condition AB5 and generalizations of module distributivity, Russ. Math. 41 (1997), 1-11. (1997) MR1480764
- Camillo V.P., Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), 337-338. (1977) Zbl0356.13003MR0442020
- Dung N.V., Huynh D.V., Smith P.F., Wisbauer R., Extending Modules, Pitman, London, 1994. Zbl0841.16001
- Dhompong S., Sanwong J., Plubtieng S., Tansee H., On modules whose singular subgenerated modules are weakly injective, Algebra Colloq. 8 (2001), 227-236. (2001) MR1838519
- Goel V.K., Jain S.K., -injective modules and rings whose cyclic modules are -injective, Comm. Algebra 6 (1978), 59-73. (1978) MR0491819
- Golan J.S., López-Permouth S.R., QI-filters and tight modules, Comm. Algebra 19 (1991), 2217-2229. (1991) MR1123120
- Jain S.K., López-Permouth S.R., Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257-269. (1990) MR1031920
- Jain S.K., López-Permouth S.R., Risvi T., A characterization of uniserial rings via continuous and discrete modules, J. Austral. Math. Soc., Ser. A 50 (1991), 197-203. (1991) MR1094917
- Jain S.K., López-Permouth S.R., Saleh M., On weakly projective modules, in: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, pp.200-208. MR1344231
- Jain S.K., López-Permouth S.R., Oshiro K., Saleh M., Weakly projective and weakly injective modules, Canad. J. Math. 34 (1994), 972-981. (1994) MR1295126
- Jain S.K., López-Permouth S.R., Singh S., On a class of -rings, Glasgow J. Math. 34 (1992), 75-81. (1992) MR1145633
- Jain S.K., López-Permouth S.R., A survey on the theory of weakly injective modules, in: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, pp.205-233. MR1245954
- Kurshan A.P., Rings whose cyclic modules have finitely generated socle, J. Algebra 14 (1970), 376-386. (1970) Zbl0199.35503MR0260780
- López-Permouth S.R., Rings characterized by their weakly injective modules, Glasgow Math. J. 34 (1992), 349-353. (1992) MR1181777
- Malik S., Vanaja N., Weak relative injective -subgenerated modules, Advances in Ring Theory, Birkhäuser, Boston, 1997, pp.221-239. Zbl0934.16002MR1602677
- Mohamed S., Muller B., Singh S., Quasi-dual continuous modules, J. Austral. Math. Soc., Ser. A 39 (1985), 287-299. (1985) MR0802719
- Mohamed S., Muller B, HASH(0xa277a48), Continuous and Discrete Modules, Cambridge University Press, 1990. MR1084376
- Saleh M., A note on tightness, Glasgow Math. J. 41 (1999), 43-44. (1999) Zbl0923.16003MR1689655
- Saleh M., Abdel-Mohsen A., On weak injectivity and weak projectivity, in: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, pp.196-207. Zbl0985.16002MR1773029
- Saleh M., Abdel-Mohsen A., A note on weak injectivity, Far East J. Math. Sci. 11 (2003), 199-206. (2003) Zbl1063.16004MR2020503
- Saleh M., On q.f.d. modules and q.f.d. rings, Houston J. Math., to appear. Zbl1070.16002MR2083867
- Sanh N.V., Shum K.P., Dhompongsa S., Wongwai S., On quasi-principally injective modules, Algebra Colloq. 6 (1999), 296-276. (1999) Zbl0949.16003MR1809646
- Sanh N.V., Dhompongsa S., Wongwai S., On generalized q.f.d. modules and rings, Algebra and Combinatorics, Springer-Verlag, 1999, pp.367-272. MR1733193
- Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, 1991. Zbl0746.16001MR1144522
- Zhou Y., Notes on weakly semisimple rings, Bull. Austral. Math. Soc. 52 (1996), 517-525. (1996) MR1358705
- Zhou Y., Weak injectivity and module classes, Comm. Algebra 25 (1997), 2395-2407. (1997) Zbl0934.16004MR1459568
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.