On weakly projective and weakly injective modules

Mohammad Saleh

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 3, page 389-402
  • ISSN: 0010-2628

Abstract

top
The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module M , there exists a module K σ [ M ] such that K N is weakly injective in σ [ M ] , for any N σ [ M ] . Similarly, if M is projective and right perfect in σ [ M ] , then there exists a module K σ [ M ] such that K N is weakly projective in σ [ M ] , for any N σ [ M ] . Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes of modules in σ [ M ] , we study when direct sums of modules from satisfy property in σ [ M ] . In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules.

How to cite

top

Saleh, Mohammad. "On weakly projective and weakly injective modules." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 389-402. <http://eudml.org/doc/249362>.

@article{Saleh2004,
abstract = {The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module $M$, there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly injective in $\sigma [M]$, for any $N\in \sigma [M]$. Similarly, if $M$ is projective and right perfect in $\sigma [M]$, then there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly projective in $\sigma [M]$, for any $N\in \sigma [M]$. Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes $\mathcal \{M\}$ of modules in $\sigma [M]$, we study when direct sums of modules from $\mathcal \{M\}$ satisfy property $\mathbb \{P\}$ in $\sigma [M]$. In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules.},
author = {Saleh, Mohammad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {tight; weakly tight; weakly injective; weakly projective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; weakly projective modules; countably thick modules; locally qfd modules; weakly semisimple modules; injective hulls; projective covers},
language = {eng},
number = {3},
pages = {389-402},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On weakly projective and weakly injective modules},
url = {http://eudml.org/doc/249362},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Saleh, Mohammad
TI - On weakly projective and weakly injective modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 389
EP - 402
AB - The purpose of this paper is to further the study of weakly injective and weakly projective modules as a generalization of injective and projective modules. For a locally q.f.d. module $M$, there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly injective in $\sigma [M]$, for any $N\in \sigma [M]$. Similarly, if $M$ is projective and right perfect in $\sigma [M]$, then there exists a module $K\in \sigma [M]$ such that $K\oplus N$ is weakly projective in $\sigma [M]$, for any $N\in \sigma [M]$. Consequently, over a right perfect ring every module is a direct summand of a weakly projective module. For some classes $\mathcal {M}$ of modules in $\sigma [M]$, we study when direct sums of modules from $\mathcal {M}$ satisfy property $\mathbb {P}$ in $\sigma [M]$. In particular, we get characterizations of locally countably thick modules, a generalization of locally q.f.d. modules.
LA - eng
KW - tight; weakly tight; weakly injective; weakly projective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; weakly projective modules; countably thick modules; locally qfd modules; weakly semisimple modules; injective hulls; projective covers
UR - http://eudml.org/doc/249362
ER -

References

top
  1. Albu T., Nastasescu C., Relative Finiteness in Module Theory, Marcel Dekker, 1984. Zbl0556.16001MR0749933
  2. Al-Huzali A., Jain S.K., López-Permouth S.R., Rings whose cyclics have finite Goldie dimension, J. Algebra 153 (1992), 37-40. (1992) MR1195405
  3. Berry D., Modules whose cyclic submodules have finite dimension, Canad. Math. Bull. 19 (1976), 1-6. (1976) Zbl0335.16025MR0417244
  4. Brodskii G., Saleh M., Thuyet L., Wisbauer R., On weak injectivity of direct sums of modules, Vietnam J. Math. 26 (1998), 121-127. (1998) MR1684323
  5. Brodskii G., Denumerable distributivity, linear compactness and the AB5 * condition in modules, Russian Acad. Sci. Dokl. Math. 53 (1996), 76-77. (1996) 
  6. Brodskii G., The Grothendieck condition AB5 * and generalizations of module distributivity, Russ. Math. 41 (1997), 1-11. (1997) MR1480764
  7. Camillo V.P., Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), 337-338. (1977) Zbl0356.13003MR0442020
  8. Dung N.V., Huynh D.V., Smith P.F., Wisbauer R., Extending Modules, Pitman, London, 1994. Zbl0841.16001
  9. Dhompong S., Sanwong J., Plubtieng S., Tansee H., On modules whose singular subgenerated modules are weakly injective, Algebra Colloq. 8 (2001), 227-236. (2001) MR1838519
  10. Goel V.K., Jain S.K., π -injective modules and rings whose cyclic modules are π -injective, Comm. Algebra 6 (1978), 59-73. (1978) MR0491819
  11. Golan J.S., López-Permouth S.R., QI-filters and tight modules, Comm. Algebra 19 (1991), 2217-2229. (1991) MR1123120
  12. Jain S.K., López-Permouth S.R., Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257-269. (1990) MR1031920
  13. Jain S.K., López-Permouth S.R., Risvi T., A characterization of uniserial rings via continuous and discrete modules, J. Austral. Math. Soc., Ser. A 50 (1991), 197-203. (1991) MR1094917
  14. Jain S.K., López-Permouth S.R., Saleh M., On weakly projective modules, in: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, pp.200-208. MR1344231
  15. Jain S.K., López-Permouth S.R., Oshiro K., Saleh M., Weakly projective and weakly injective modules, Canad. J. Math. 34 (1994), 972-981. (1994) MR1295126
  16. Jain S.K., López-Permouth S.R., Singh S., On a class of Q I -rings, Glasgow J. Math. 34 (1992), 75-81. (1992) MR1145633
  17. Jain S.K., López-Permouth S.R., A survey on the theory of weakly injective modules, in: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, pp.205-233. MR1245954
  18. Kurshan A.P., Rings whose cyclic modules have finitely generated socle, J. Algebra 14 (1970), 376-386. (1970) Zbl0199.35503MR0260780
  19. López-Permouth S.R., Rings characterized by their weakly injective modules, Glasgow Math. J. 34 (1992), 349-353. (1992) MR1181777
  20. Malik S., Vanaja N., Weak relative injective M -subgenerated modules, Advances in Ring Theory, Birkhäuser, Boston, 1997, pp.221-239. Zbl0934.16002MR1602677
  21. Mohamed S., Muller B., Singh S., Quasi-dual continuous modules, J. Austral. Math. Soc., Ser. A 39 (1985), 287-299. (1985) MR0802719
  22. Mohamed S., Muller B, HASH(0xa277a48), Continuous and Discrete Modules, Cambridge University Press, 1990. MR1084376
  23. Saleh M., A note on tightness, Glasgow Math. J. 41 (1999), 43-44. (1999) Zbl0923.16003MR1689655
  24. Saleh M., Abdel-Mohsen A., On weak injectivity and weak projectivity, in: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, pp.196-207. Zbl0985.16002MR1773029
  25. Saleh M., Abdel-Mohsen A., A note on weak injectivity, Far East J. Math. Sci. 11 (2003), 199-206. (2003) Zbl1063.16004MR2020503
  26. Saleh M., On q.f.d. modules and q.f.d. rings, Houston J. Math., to appear. Zbl1070.16002MR2083867
  27. Sanh N.V., Shum K.P., Dhompongsa S., Wongwai S., On quasi-principally injective modules, Algebra Colloq. 6 (1999), 296-276. (1999) Zbl0949.16003MR1809646
  28. Sanh N.V., Dhompongsa S., Wongwai S., On generalized q.f.d. modules and rings, Algebra and Combinatorics, Springer-Verlag, 1999, pp.367-272. MR1733193
  29. Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, 1991. Zbl0746.16001MR1144522
  30. Zhou Y., Notes on weakly semisimple rings, Bull. Austral. Math. Soc. 52 (1996), 517-525. (1996) MR1358705
  31. Zhou Y., Weak injectivity and module classes, Comm. Algebra 25 (1997), 2395-2407. (1997) Zbl0934.16004MR1459568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.