On generalized q.f.d. modules

Mohammad Saleh; S. K. Jain; Sergio R. López-Permouth

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 3, page 243-251
  • ISSN: 0044-8753

Abstract

top
A right R -module M is called a generalized q.f.d. module if every M-singular quotient has finitely generated socle. In this note we give several characterizations to this class of modules by means of weak injectivity, tightness, and weak tightness that generalizes the results in [sanh1], Theorem 3. In particular, it is shown that a module M is g.q.f.d. iff every direct sum of M -singular M -injective modules in σ [ M ] is weakly injective iff every direct sum of M -singular weakly tight is weakly tight iff every direct sum of the injective hulls of M -singular simples is weakly R -tight.

How to cite

top

Saleh, Mohammad, Jain, S. K., and López-Permouth, Sergio R.. "On generalized q.f.d. modules." Archivum Mathematicum 041.3 (2005): 243-251. <http://eudml.org/doc/249512>.

@article{Saleh2005,
abstract = {A right $R$-module $M$ is called a generalized q.f.d. module if every M-singular quotient has finitely generated socle. In this note we give several characterizations to this class of modules by means of weak injectivity, tightness, and weak tightness that generalizes the results in [sanh1], Theorem 3. In particular, it is shown that a module $M$ is g.q.f.d. iff every direct sum of $M$-singular $M$-injective modules in $\{\sigma [M]\}$ is weakly injective iff every direct sum of $M$-singular weakly tight is weakly tight iff every direct sum of the injective hulls of $M$-singular simples is weakly $R$-tight.},
author = {Saleh, Mohammad, Jain, S. K., López-Permouth, Sergio R.},
journal = {Archivum Mathematicum},
keywords = {tight; weakly tight; weakly injective; q.f.d.; generalized q.f.d. modules; generalized weakly semisimple; generalized weakly semisimple modules; weakly tight modules; weakly injective modules; locally q.f.d. modules; finitely generated submodules; injective hulls; direct sums; simple modules},
language = {eng},
number = {3},
pages = {243-251},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On generalized q.f.d. modules},
url = {http://eudml.org/doc/249512},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Saleh, Mohammad
AU - Jain, S. K.
AU - López-Permouth, Sergio R.
TI - On generalized q.f.d. modules
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 3
SP - 243
EP - 251
AB - A right $R$-module $M$ is called a generalized q.f.d. module if every M-singular quotient has finitely generated socle. In this note we give several characterizations to this class of modules by means of weak injectivity, tightness, and weak tightness that generalizes the results in [sanh1], Theorem 3. In particular, it is shown that a module $M$ is g.q.f.d. iff every direct sum of $M$-singular $M$-injective modules in ${\sigma [M]}$ is weakly injective iff every direct sum of $M$-singular weakly tight is weakly tight iff every direct sum of the injective hulls of $M$-singular simples is weakly $R$-tight.
LA - eng
KW - tight; weakly tight; weakly injective; q.f.d.; generalized q.f.d. modules; generalized weakly semisimple; generalized weakly semisimple modules; weakly tight modules; weakly injective modules; locally q.f.d. modules; finitely generated submodules; injective hulls; direct sums; simple modules
UR - http://eudml.org/doc/249512
ER -

References

top
  1. Albu T., Nastasescu C., Relative finiteness in module theory, Marcel Dekker 1984. (1984) Zbl0556.16001MR0749933
  2. Al-Huzali A., Jain S. K., López-Permouth S. R., Rings whose cyclics have finite Goldie dimension, J. Algebra 153 (1992), 37–40. (1992) MR1195405
  3. Berry D., Modules whose cyclic submodules have finite dimension, Canad. Math. Bull. 19 (1976), 1–6. (1976) Zbl0335.16025MR0417244
  4. Brodskii G., Saleh M., Thuyet L., Wisbauer R., On weak injectivity of direct sums of modules, Vietnam J. Math. 26 (1998), 121–127. (1998) MR1684323
  5. Camillo V. P., Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), 337–338. (1977) Zbl0356.13003MR0442020
  6. Dhompong S., Sanwong J., Plubtieng S., Tansee H., On modules whose singular subgenerated modules are weakly injective, Algebra Colloq. 8 (2001), 227–236. MR1838519
  7. Dung N. V., Huynh D. V., Smith P., Wisbauer R., Extending modules, Pitman, 1994. (1994) Zbl0841.16001
  8. Golan J. S., López-Permouth S. R., QI-filters and tight modules, Comm. Algebra 19 (1991), 2217–2229. (1991) MR1123120
  9. Jain S. K., López-Permouth S. R., Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257–269. (1990) MR1031920
  10. Jain S. K., López-Permouth S. R., Oshiro K., Saleh M., Weakly projective and weakly injective modules, Canad. J. Math. 34 (1994), 972–981. (1994) MR1295126
  11. Jain S. K., López-Permouth S. R., Singh S., On a class of QI-rings, Glasgow J. Math. 34 (1992), 75–81. (1992) MR1145633
  12. Jain S. K., López-Permouth S. R., A survey on the theory of weakly injective modules, In: Computational Algebra, 205–233, Lecture notes in pure and applied mathematics, Marcel Dekker, Inc., New York, 1994. (1994) MR1245954
  13. Kurshan A. P., Rings whose cyclic modules have finitely generated socle, J. Algebra 14 (1970), 376–386. (1970) Zbl0199.35503MR0260780
  14. López-Permouth S. R., Rings characterized by their weakly injective modules, Glasgow Math. J. 34 (1992), 349–353. (1992) MR1181777
  15. Malik S., Vanaja N., Weak relative injective M-subgenerated modules, Advances in Ring Theory, Birkhauser, 1997, 221–239. (1997) Zbl0934.16002MR1602677
  16. Page S., Zhou Y., When direct sums of singular injectives are injective, In: Ring theory, Proceedings of the Ohio State-Denison Conference, World Scientific Publishing Co., 1993. (1993) Zbl0853.16005MR1344237
  17. Page S., Zhou Y., On direct sums of injective modules and chain conditions, Canad. J. Math. 46 (1994), 634–647. (1994) Zbl0807.16006MR1276116
  18. Page S., Zhou Y., Direct sums of quasi-injective modules, injective hulls, and natural classes, Comm. Alg. 22 (1994), 2911–2923. (1994) MR1272360
  19. Saleh M., A note on tightness, Glasgow Math. J. 41 (1999), 43–44. (1999) Zbl0923.16003MR1689655
  20. Saleh M., Abdel-Mohsen A., On weak injectivity and weak projectivity, In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207. Zbl0985.16002MR1773029
  21. Saleh M., Abdel-Mohsen A., A note on weak injectivity, FJMS 11(2) (2003), 199–206. Zbl1063.16004MR2020503
  22. Saleh M., On q.f.d. modules and q.f.d. rings, Houston J. Math. 30 (2004), 629–636. Zbl1070.16002MR2083867
  23. Saleh M., On weakly projective and weakly injective modules, Comment. Math. Univ. Corolin. 45 (2004), 389–402. Zbl1101.16004MR2103135
  24. Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S., On quasi-principally injective modules, Algebra Colloq. 6 (1999), 296–276. (1999) Zbl0949.16003MR1809646
  25. Sanh N. V., Dhompongsa S., Wongwai S., On generalized q.f.d. modules and rings, Algebra and Combinatorics (1999), 367–372. (1999) MR1733193
  26. Wisbauer R., Foundations of module and ring theory, Gordon and Breach, 1991. (1991) Zbl0746.16001MR1144522
  27. Zhou Y., Notes on weakly semisimple rings, Bull. Austral. Math. Soc. 52 (1996), 517–525. (1996) MR1358705
  28. Zhou Y., Weak injectivity and module classes, Comm. Algebra 25 (1997), 2395–2407. (1997) Zbl0934.16004MR1459568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.