Cardinal characteristics of the ideal of Haar null sets
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 1, page 119-137
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O.. "Cardinal characteristics of the ideal of Haar null sets." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 119-137. <http://eudml.org/doc/249366>.
@article{Banakh2004,
abstract = {We calculate the cardinal characteristics of the $\sigma $-ideal $\mathcal \{H\}\mathcal \{N\}(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname\{cov\}(\mathcal \{H\}\mathcal \{N\}(G)) \le \mathfrak \{b\}\le \max \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace \le \operatorname\{non\}(\mathcal \{H\}\mathcal \{N\}(G))\le \operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G)) \hspace\{-0.86pt\}> \hspace\{-0.86pt\}\min \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace $. If $G=\prod _\{n\ge 0\}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname\{add\}(\mathcal \{H\}\mathcal \{N\}(G)) = \operatorname\{add\}(\mathcal \{N\})$, $\operatorname\{cov\}(\mathcal \{H\}\mathcal \{N\}(G))=\min \lbrace \mathfrak \{b\}, \operatorname\{cov\}(\mathcal \{N\})\rbrace $, $\operatorname\{non\}(\mathcal \{H\}\mathcal \{N\}(G))= \max \lbrace \mathfrak \{d\},\operatorname\{non\}(\mathcal \{N\})\rbrace $ and $\operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G))\ge \operatorname\{cof\}(\mathcal \{N\})$, where $\mathcal \{N\}$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname\{cof\}(\mathcal \{H\}\mathcal \{N\}(G))>2^\{\aleph _0\}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\mathcal \{H\}\mathcal \{N\}(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$.},
author = {Banakh, Taras O.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Polish group; Haar null set; Martin Axion; cardinal characteristics of an ideal; $o$-bounded set; the small ball property; Polish group; Haar null set; cardinal characteristics of an ideal},
language = {eng},
number = {1},
pages = {119-137},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cardinal characteristics of the ideal of Haar null sets},
url = {http://eudml.org/doc/249366},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Banakh, Taras O.
TI - Cardinal characteristics of the ideal of Haar null sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 119
EP - 137
AB - We calculate the cardinal characteristics of the $\sigma $-ideal $\mathcal {H}\mathcal {N}(G)$ of Haar null subsets of a Polish non-locally compact group $G$ with invariant metric and show that $\operatorname{cov}(\mathcal {H}\mathcal {N}(G)) \le \mathfrak {b}\le \max \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace \le \operatorname{non}(\mathcal {H}\mathcal {N}(G))\le \operatorname{cof}(\mathcal {H}\mathcal {N}(G)) \hspace{-0.86pt}> \hspace{-0.86pt}\min \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace $. If $G=\prod _{n\ge 0}G_n$ is the product of abelian locally compact groups $G_n$, then $\operatorname{add}(\mathcal {H}\mathcal {N}(G)) = \operatorname{add}(\mathcal {N})$, $\operatorname{cov}(\mathcal {H}\mathcal {N}(G))=\min \lbrace \mathfrak {b}, \operatorname{cov}(\mathcal {N})\rbrace $, $\operatorname{non}(\mathcal {H}\mathcal {N}(G))= \max \lbrace \mathfrak {d},\operatorname{non}(\mathcal {N})\rbrace $ and $\operatorname{cof}(\mathcal {H}\mathcal {N}(G))\ge \operatorname{cof}(\mathcal {N})$, where $\mathcal {N}$ is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that $\operatorname{cof}(\mathcal {H}\mathcal {N}(G))>2^{\aleph _0}$ and hence $G$ contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of $G$. This gives a negative (consistent) answer to a question of S. Solecki. To obtain these estimates we show that for a Polish non-locally compact group $G$ with invariant metric the ideal $\mathcal {H}\mathcal {N}(G)$ contains all $o$-bounded subsets (equivalently, subsets with the small ball property) of $G$.
LA - eng
KW - Polish group; Haar null set; Martin Axion; cardinal characteristics of an ideal; $o$-bounded set; the small ball property; Polish group; Haar null set; cardinal characteristics of an ideal
UR - http://eudml.org/doc/249366
ER -
References
top- Banakh T., Locally minimal groups and their embeddings into products of -bounded groups, Comment. Math. Univ. Carolinae 41.4 (2000), 811-815. (2000) MR1800163
- Banakh T., On index of total boundedness of (strictly) -bounded groups, Topology Appl. 120 (2002), 427-439. (2002) Zbl1010.22004MR1897272
- Banakh T., Nickolas P., Sanchis M., Filter games and pathologic subgroups of the countable product of lines, J. Austral. Math. Soc., to appear. MR2300160
- Banakh T.O., Protasov I.V., Ball structures and colorings of graphs and groups, VNTL, Lviv, 2003. Zbl1147.05033MR2392704
- Bartoszyński T., Judah H., Shelah S., The Cichoń diagram, J. Symb. Log. 58.2 (1993), 401-423. (1993) MR1233917
- Behrends E., Kadets V., On the small ball property, Studia Math. 148 (2001), 275-287. (2001) MR1880727
- Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, I, Amer. Math. Soc., 2000. MR1727673
- Christensen J.P.R., On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260. (1972) MR0326293
- Dougherty R., Examples of nonshy sets, Fund. Math. 144 (1994), 73-88. (1994) MR1271479
- van Douwen E.K., The integers and topology, in Handbook of Set-Theoretic Topology , K. Kunen, J.E. Vaughan (Eds.), North-Holland, Amsterdam, 1984, pp.111-167. Zbl0561.54004MR0776619
- Hernández C., Topological groups close to being -compact, Topology Appl. 102 (2000), 101-111. (2000) MR1739266
- Hernández C., Robbie D., Tkachenko M., Some properties of -bounded and strictly -bounded groups, Appl. General Topology 1 (2000), 29-43. (2000) MR1796930
- Heyer H., Probability Measures on Locally Compact Groups, Springer, 1977. Zbl0528.60010MR0501241
- Kechris A., Classical Descriptive Set Theory, Springer, 1995. Zbl0819.04002MR1321597
- Laver R., On the consistency of the Borel's conjecture, Acta Math. 137 (1976), 151-169. (1976) MR0422027
- Paterson A., Amenability, Math. Surveys and Monographs, vol. 29, Amer. Math. Soc., 1988. Zbl1106.22008MR0961261
- Plichko A., Zagorodnyuk A., Isotropic mappings and automatic continuity of polynomial, analytic, and convex operators, in General Topology in Banach Spaces (T. Banakh, Ed.), Nova Sci. Publ., NY, 2001, pp.1-13. MR1901530
- Pontryagin L.S., Continuous Groups, Nauka, Moscow, 1984. Zbl0659.22001MR0767087
- Solecki S., Haar null sets, Fund. Math. 149 (1996), 205-210. (1996) Zbl0887.28006MR1383206
- Solecki S., Haar null and non-dominating sets, Fund. Math. 170 (2001), 197-217. (2001) Zbl0994.28006MR1881376
- Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179-231. (1998) Zbl0955.54013MR1623960
- Tkachenko M., Topological groups: between compactness and -boundedness, in Recent Progress in General Topology, (M. Hušek and J. van Mill, Eds.), North-Holland, 2002. Zbl1029.54045MR1970010
- Tsaban B., -Bounded groups and other topological groups with strong combinatorial properties, submitted, http://arxiv.org/abs/math.GN/0307225. Zbl1090.54034MR2180906
- Topsøe F., Hoffmann-Jørgensen J., Analytic Spaces and their Applications, in Analytic Sets, C. Rogers et al., Academic Press, London, 1980.
- Vaughan J.E., Small uncountable cardinals and topology, in Open Problems in Topology, J. van Mill, G.M. Reed (Eds.), Elsevier Sci. Publ., 1990, pp.197-216. MR1078647
- Zakrzewski P., Measures on algebraic-topological structures, in Handbook on Measure Theory, E. Pap (Ed.), North Holland, 2002. Zbl1040.28016MR1954637
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.