Preferred parameterisations on homogeneous curves

Michael Eastwood; Jan Slovák

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 4, page 597-606
  • ISSN: 0010-2628

Abstract

top
We show how to specify preferred parameterisations on a homogeneous curve in an arbitrary homogeneous space. We apply these results to limit the natural parameters on distinguished curves in parabolic geometries.

How to cite

top

Eastwood, Michael, and Slovák, Jan. "Preferred parameterisations on homogeneous curves." Commentationes Mathematicae Universitatis Carolinae 45.4 (2004): 597-606. <http://eudml.org/doc/249371>.

@article{Eastwood2004,
abstract = {We show how to specify preferred parameterisations on a homogeneous curve in an arbitrary homogeneous space. We apply these results to limit the natural parameters on distinguished curves in parabolic geometries.},
author = {Eastwood, Michael, Slovák, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {homogeneous space; parabolic geometry; distinguished curves; homogeneous space; parabolic geometry; distinguished curves},
language = {eng},
number = {4},
pages = {597-606},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Preferred parameterisations on homogeneous curves},
url = {http://eudml.org/doc/249371},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Eastwood, Michael
AU - Slovák, Jan
TI - Preferred parameterisations on homogeneous curves
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 4
SP - 597
EP - 606
AB - We show how to specify preferred parameterisations on a homogeneous curve in an arbitrary homogeneous space. We apply these results to limit the natural parameters on distinguished curves in parabolic geometries.
LA - eng
KW - homogeneous space; parabolic geometry; distinguished curves; homogeneous space; parabolic geometry; distinguished curves
UR - http://eudml.org/doc/249371
ER -

References

top
  1. Ackerman M., Hermann R., Sophus Lie's 1880 Transformation Group Paper, Math Sci Press, Brookline, Mass., 1975. MR0460053
  2. Čap A., Slovák J., Žádník V., On distinguished curves in parabolic geometries, Transformation Groups 9 2 (2004), 143-166. (2004) Zbl1070.53021MR2056534
  3. Lie S., Theorie der Transformationsgruppen, Math. Ann. 16 (1880), 441-528. (1880) MR1510035
  4. Sharpe R.W., Differential Geometry, Springer, New York, 1997. Zbl0876.53001MR1453120
  5. Strigunova M.S., Finite-dimensional subalgebras of the Lie algebra of vector fields on the circle (in Russian), Trudy Mat. Inst. Steklova 236 (2002), 338-342. (2002) MR1931034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.