# A critical point result for non-differentiable indefinite functionals

Salvatore A. Marano; Dumitru Motreanu

Commentationes Mathematicae Universitatis Carolinae (2004)

- Volume: 45, Issue: 4, page 663-679
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topMarano, Salvatore A., and Motreanu, Dumitru. "A critical point result for non-differentiable indefinite functionals." Commentationes Mathematicae Universitatis Carolinae 45.4 (2004): 663-679. <http://eudml.org/doc/249378>.

@article{Marano2004,

abstract = {In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced.},

author = {Marano, Salvatore A., Motreanu, Dumitru},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {locally Lipschitz continuous and indefinite functionals; deformation lemmas; critical point theorems; critical points; Benci-Rabinowitz theorem; Palais-Smale condition; nonsmooth functionals},

language = {eng},

number = {4},

pages = {663-679},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {A critical point result for non-differentiable indefinite functionals},

url = {http://eudml.org/doc/249378},

volume = {45},

year = {2004},

}

TY - JOUR

AU - Marano, Salvatore A.

AU - Motreanu, Dumitru

TI - A critical point result for non-differentiable indefinite functionals

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2004

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 45

IS - 4

SP - 663

EP - 679

AB - In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced.

LA - eng

KW - locally Lipschitz continuous and indefinite functionals; deformation lemmas; critical point theorems; critical points; Benci-Rabinowitz theorem; Palais-Smale condition; nonsmooth functionals

UR - http://eudml.org/doc/249378

ER -

## References

top- Barletta G., Applications of a critical point result for non-differentiable indefinite functionals, preprint.
- Barletta G., Marano S.A., Some remarks on critical point theory for locally Lipschitz functions, Glasgow Math. J. 45 (2003), 131-141. (2003) Zbl1101.58009MR1972703
- Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012. (1983) Zbl0522.58012MR0713209
- Benci V., Rabinowitz P.H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. (1979) Zbl0465.49006MR0537061
- Chabrowski J., Variational Methods for Potential Operator Equations, de Gruyter Ser. Nonlinear Anal. Appl. 24, de Gruyter, Berlin, 1997. Zbl1157.35338MR1467724
- Chang K.-C., Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. (1981) Zbl0487.49027MR0614246
- Clarke F.H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics 5, SIAM, Philadelphia, 1990. Zbl0696.49002MR1058436
- Costa D.G., Magalh aes C., A unified approach to a class of strongly indefinite functionals, J. Differential Equations 125 (1996), 521-547. (1996) MR1378765
- Ding Y., A remark on the linking theorem with applications, Nonlinear Anal. 22 (1994), 237-250. (1994) Zbl0798.58014MR1258960
- Du Y., A deformation lemma and some critical point theorems, Bull. Austral. Math. Soc. 43 (1991), 161-168. (1991) Zbl0714.58008MR1086730
- Ghoussoub N., Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math. 107, Cambridge Univ. Press, Cambridge, 1993. Zbl1143.58300MR1251958
- Hofer H., On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), 185-214. (1983) Zbl0524.58010MR0678344
- Motreanu D., Varga C., Some critical point results for locally Lipschitz functionals, Comm. Appl. Nonlinear Anal. 4 (1997), 17-33. (1997) MR1460105
- Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986. Zbl0609.58002MR0845785
- Struwe M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second Edition, Ergeb. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin, 1996. MR1411681

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.