A maximum principle for linear elliptic systems with discontinuous coefficients

Salvatore Leonardi

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 3, page 457-474
  • ISSN: 0010-2628

Abstract

top
We prove a maximum principle for linear second order elliptic systems in divergence form with discontinuous coefficients under a suitable condition on the dispersion of the eigenvalues of the coefficients matrix.

How to cite

top

Leonardi, Salvatore. "A maximum principle for linear elliptic systems with discontinuous coefficients." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 457-474. <http://eudml.org/doc/249380>.

@article{Leonardi2004,
abstract = {We prove a maximum principle for linear second order elliptic systems in divergence form with discontinuous coefficients under a suitable condition on the dispersion of the eigenvalues of the coefficients matrix.},
author = {Leonardi, Salvatore},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {maximum principle; elliptic systems; maximum principle; elliptic systems; dispersion of the eigenvalues},
language = {eng},
number = {3},
pages = {457-474},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A maximum principle for linear elliptic systems with discontinuous coefficients},
url = {http://eudml.org/doc/249380},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Leonardi, Salvatore
TI - A maximum principle for linear elliptic systems with discontinuous coefficients
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 457
EP - 474
AB - We prove a maximum principle for linear second order elliptic systems in divergence form with discontinuous coefficients under a suitable condition on the dispersion of the eigenvalues of the coefficients matrix.
LA - eng
KW - maximum principle; elliptic systems; maximum principle; elliptic systems; dispersion of the eigenvalues
UR - http://eudml.org/doc/249380
ER -

References

top
  1. Campanato S., Equazioni ellittiche del II o ordine e spazi 2 , λ , Ann. Mat. Pura Appl. (4) 69 (1965), 321-381. (1965) MR0192168
  2. Campanato S., Maggiorazioni interpolatorie negli spazi H λ m , p ( Ø m e g a ) , Ann. Mat. Pura Appl. (4) 75 (1967), 261-276. (1967) MR0216284
  3. Campanato S., Sistemi Ellittici in forma divergenza. Regolarità all' interno, Quaderni Scuola Normale Superiore Pisa, Pisa, 1980. Zbl0453.35026MR0668196
  4. Campanato S., A maximum principle for non-linear elliptic systems: boundary fundamental estimates, Adv. in Math. 66 (1987), 291-317. (1987) MR0915857
  5. Cannarsa P., On a maximum principle for elliptic systems with constant coefficients, Rend. Sem. Univ. Padova 64 (1981). (1981) Zbl0473.35016MR0636627
  6. de Giorgi E., Sulla differenziabilitá e l'analiticità delle estremali degli integrali multipli regolari, Memorie dell'Accademia delle Scienze di Torino, Serie 3, 3(I) (1957). (1957) Zbl0084.31901
  7. de Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4) 1 (1968), 135-137. (1968) MR0227827
  8. Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies, Princeton University Press, Princeton, 1983. Zbl0516.49003MR0717034
  9. Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second edition., Springer, 1983. Zbl1042.35002MR0737190
  10. Kalita E., On the Hölder continuity of solutions of nonlinear parabolic systems, Comment. Math. Univ. Carolinae 35.4 (1994), 675-680. (1994) Zbl0814.35011MR1321237
  11. Koshelev A.I., Regularity Problem for Quasilinear Elliptic and Parabolic Systems, Springer, 1995. Zbl0847.35023MR1442954
  12. Kottas J., Interior regularity for the quasilinear elliptic systems with nonsmooth coefficients, Comment. Math. Univ. Carolinae 28.1 (1987), 95-102. (1987) MR0889771
  13. Kottas J., Regularita slabých řešení eliptických úloh, Thesis of Dissertation, Charles University, Prague, 1990. 
  14. Kufner A., John O., Fučík S., Function Spaces, Noordhoff Int. Pub. Leyden, Academia Prague, 1977. MR0482102
  15. Leonardi S., On constants of some regularity theorems. De Giorgi's type counterexample, Math. Nachr. 192 (1998). (1998) Zbl0909.35030MR1626336
  16. Leonardi S., Remarks on the regularity of solutions of elliptic systems, Kluwer Academic/ Plenum Publishers, New York, 1999. Zbl0952.35034MR1727457
  17. Maz'ya V.G., Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients, Funktsional'nyi Analiz. i Ego Prilosheniya 2 (1968). (1968) Zbl0179.43601MR0237946
  18. Meyers N.G., An L p estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, (3) 17 (1963). (1963) MR0159110
  19. Miranda C., Istituzioni di Analisi Funzionale Lineare, U.M.I. 1978. Zbl0697.46002
  20. Nečas J., Les Méthodes Directes en Théorie des Équationes elliptiques, Masson et Cie, Éditeurs, Paris, 1967. MR0227584
  21. Nečas J., On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, Lectures at Scuola Normale Superiore, Pisa, 1979. 
  22. Nečas J., Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte Math., Leipzig, 1983 or J. Wiley, Chichester, 1986. MR0874752
  23. Nečas J., Stará J., Principio di massimo per sistemi ellittici quasi lineari non diagonali, Boll. Un. Mat. Ital. (4) 6 (1972), 1-10. (1972) MR0315281

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.