# Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu; Nikolaos S. Papageorgiou

Commentationes Mathematicae Universitatis Carolinae (1994)

- Volume: 35, Issue: 4, page 705-720
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topHu, Shouchuan, and Papageorgiou, Nikolaos S.. "Galerkin approximations for nonlinear evolution inclusions." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 705-720. <http://eudml.org/doc/247626>.

@article{Hu1994,

abstract = {In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.},

author = {Hu, Shouchuan, Papageorgiou, Nikolaos S.},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Galerkin approximations; evolution triple; monotone operator; hemicontinuous operator; compact embedding; periodic trajectory; tangent cone; connected set; acyclic set; monotone operator; convergence; Galerkin approximations; nonlinear nonautonomous evolution inclusion; Hilbert space; periodic solutions; multivalued parabolic partial differential equations},

language = {eng},

number = {4},

pages = {705-720},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Galerkin approximations for nonlinear evolution inclusions},

url = {http://eudml.org/doc/247626},

volume = {35},

year = {1994},

}

TY - JOUR

AU - Hu, Shouchuan

AU - Papageorgiou, Nikolaos S.

TI - Galerkin approximations for nonlinear evolution inclusions

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1994

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 35

IS - 4

SP - 705

EP - 720

AB - In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.

LA - eng

KW - Galerkin approximations; evolution triple; monotone operator; hemicontinuous operator; compact embedding; periodic trajectory; tangent cone; connected set; acyclic set; monotone operator; convergence; Galerkin approximations; nonlinear nonautonomous evolution inclusion; Hilbert space; periodic solutions; multivalued parabolic partial differential equations

UR - http://eudml.org/doc/247626

ER -

## References

top- Attouch H., Variational Convergence for Functional and Operator, Pitman, London, 1984.
- DeBlasi F.S., Myjak J., On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. (1986) MR0834135
- DeBlasi F.S., Myjak J., On the solution sets for differential inclusions, Bulletin Polish Acad. Sci. 33 (1985), 17-23. (1985) MR0798723
- Eilenberg S., Montgomery D., Fixed point theorems for multivalued transformations, Amer. J. Math. 68 (1946), 214-222. (1946) Zbl0060.40203MR0016676
- Hu S., Papageorgiou N.S., On the topological regularity of the solution set of differential inclusions with state constraints, J. Diff. Equations 107 (1994), in press. (1994) MR1264523
- Lakshmikantham V., Leela S., Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981. Zbl0456.34002MR0616449
- Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, J. Math. Math. Sci. 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
- Papageorgiou N.S., On infinite dimensional control systems with state and control constraints, Proc. Indian Acad. Sci. 100 (1990), 65-79. (1990) Zbl0703.49018MR1051092
- Papageorgiou N.S., A viability result for nonlinear time dependent evolution inclusion, Yokohama Math. Jour. 40 (1992), 73-86. (1992) MR1190002
- Papageorgiou N.S., On the bang-bang principle for nonlinear evolution inclusions, Aequationes Math. 45 (1993), 267-280. (1993) Zbl0780.34046MR1212391
- Strang G., Fix G., An Analysis of the FInite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973. Zbl0356.65096MR0443377
- Zeidler E., Nonlinear Functional Analysis and its Application II, Springer Verlag, New York, 1990. MR0816732

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.