Magic and supermagic dense bipartite graphs
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 3, page 583-591
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Czygrinow and H.A. Kierstead, 2-factors in dense bipartite graphs, Discrete Math. 257 (2002) 357-369, doi: 10.1016/S0012-365X(02)00435-1. Zbl1008.05119
- [2] M. Doob, Characterizations of regular magic graphs, J. Combin. Theory (B) 25 (1978) 94-104, doi: 10.1016/S0095-8956(78)80013-6. Zbl0384.05054
- [3] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics #DS6 36 (2003). Zbl0953.05067
- [4] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Inc., San Diego, 1990). Zbl0703.05001
- [5] J. Ivanco, On supermagic regular graphs, Mathematica Bohemica 125 (2000) 99-114. Zbl0963.05121
- [6] J. Ivanco, Z. Lastivková and A. Semanicová, On magic and supermagic line graphs, Mathematica Bohemica 129 (2004) 33-42.
- [7] R.H. Jeurissen, Magic graphs, a characterization, Europ. J. Combin. 9 (1988) 363-368. Zbl0657.05065
- [8] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438. Zbl0571.05030
- [9] J. Moon and L. Moser, On Hamiltonian bipartite graphs, Isr. J. Math. 1 (1963) 163-165, doi: 10.1007/BF02759704. Zbl0119.38806
- [10] J. Sedlácek, On magic graphs, Math. Slovaca 26 (1976) 329-335. Zbl0348.05114
- [11] J. Sedlácek, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163-164.
- [12] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059, doi: 10.4153/CJM-1966-104-7. Zbl0149.21401
- [13] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9. Zbl0162.27801