The -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large
- [1] Institute for Mathematics and Computer Science (IWI) University of Groningen P.O. Box 800 NL-9700 AV Groningen, The Netherlands Current address: Institut für Geometrie Universität Hannover Welfengarten 1 D-30167 Hannover, Germany
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 787-800
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKloosterman, Remke. "The $p$-part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 787-800. <http://eudml.org/doc/249416>.
@article{Kloosterman2005,
abstract = {In this paper we show that for every prime $p\ge 5$ the dimension of the $p$-torsion in the Tate-Shafarevich group of $E/K$ can be arbitrarily large, where $E$ is an elliptic curve defined over a number field $K$, with $[K:\mathbb\{Q\}]$ bounded by a constant depending only on $p$. From this we deduce that the dimension of the $p$-torsion in the Tate-Shafarevich group of $A/\mathbb\{Q\}$ can be arbitrarily large, where $A$ is an abelian variety, with $\dim A$ bounded by a constant depending only on $p$.},
affiliation = {Institute for Mathematics and Computer Science (IWI) University of Groningen P.O. Box 800 NL-9700 AV Groningen, The Netherlands Current address: Institut für Geometrie Universität Hannover Welfengarten 1 D-30167 Hannover, Germany},
author = {Kloosterman, Remke},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Tate-Shafarevich group; elliptic curve; abelian variety},
language = {eng},
number = {3},
pages = {787-800},
publisher = {Université Bordeaux 1},
title = {The $p$-part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large},
url = {http://eudml.org/doc/249416},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Kloosterman, Remke
TI - The $p$-part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 787
EP - 800
AB - In this paper we show that for every prime $p\ge 5$ the dimension of the $p$-torsion in the Tate-Shafarevich group of $E/K$ can be arbitrarily large, where $E$ is an elliptic curve defined over a number field $K$, with $[K:\mathbb{Q}]$ bounded by a constant depending only on $p$. From this we deduce that the dimension of the $p$-torsion in the Tate-Shafarevich group of $A/\mathbb{Q}$ can be arbitrarily large, where $A$ is an abelian variety, with $\dim A$ bounded by a constant depending only on $p$.
LA - eng
KW - Tate-Shafarevich group; elliptic curve; abelian variety
UR - http://eudml.org/doc/249416
ER -
References
top- R. Bölling, Die Ordnung der Schafarewitsch-Tate Gruppe kann beliebig groß werden. Math. Nachr. 67 (1975), 157–179. Zbl0314.14008MR384812
- J.W.S. Cassels, Arithmetic on Curves of Genus 1 (VI). The Tate-Šafarevič group can be arbitrarily large. J. Reine Angew. Math. 214/215 (1964), 65–70. Zbl0236.14012MR162800
- J.W.S. Cassels, Arithmetic on curves of genus 1 (VIII). On the conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217 (1965), 180–189. Zbl0241.14017MR179169
- T. Fisher, On 5 and 7 descents for elliptic curves. PhD Thesis, Camebridge, 2000.
- T. Fisher, Some examples of 5 and 7 descent for elliptic curves over . J. Eur. Math. Soc. 3 (2001), 169–201. Zbl1007.11031MR1831874
- H. Halberstam, H.-E. Richert, Sieve Methods. Academic Press, London, 1974. Zbl0298.10026MR424730
- R. Kloosterman, E.F. Schaefer, Selmer groups of elliptic curves that can be arbitrarily large. J. Number Theory 99 (2003), 148–163. Zbl1074.11032MR1957249
- K. Kramer, A family of semistable elliptic curves with large Tate-Shafarevich groups. Proc. Amer. Math. Soc. 89 (1983), 379–386. Zbl0567.14018MR715850
- B. Mazur, A. Wiles, Class fields of abelian extensions of . Invent. Math. 76 (1984), 179–330. Zbl0545.12005MR742853
- J. S. Milne, On the arithmetic of abelian varieties. Invent. Math. 17 (1972), 177–190. Zbl0249.14012MR330174
- B. Poonen, E.F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488 (1997), 141–188. Zbl0888.11023MR1465369
- D.E. Rohrlich, Modular Curves, Hecke Correspondences, and -functions. In Modular forms and Fermat’s last theorem (Boston, MA, 1995), 41–100, Springer, New York, 1997. Zbl0897.11019MR1638476
- J.-P. Serre, Local fields. Graduate Texts in Mathematics 67, Springer-Verlag, New York-Berlin, 1979. Zbl0423.12016MR554237
- J.-P. Serre, Lectures on the Mordell-Weil theorem. Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1989. Zbl0676.14005MR1757192
- E.F. Schaefer, Class groups and Selmer groups. J. Number Theory 56 (1996), 79–114. Zbl0859.11034MR1370197
- E.F. Schaefer, M. Stoll, How to do a -descent on an elliptic curve. Preprint, 2001. Zbl1119.11029
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, Princeton, 1971. Zbl0872.11023MR314766
- J. Silverman, The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- P. Stevenhagen, H.W. Lenstra, Jr, Chebotarëv and his density theorem. Math. Intelligencer 18 (1996), 26–37. Zbl0885.11005MR1395088
- J. Vélu, Courbes elliptiques munies d’un sous-groupe . Bull. Soc. Math. France Mém. No. 57, 1978. Zbl0433.14029MR507751
- L.C. Washington, Galois cohomology. Modular forms and Fermat’s last theorem (Boston, MA, 1995), 101–120, Springer, New York, 1997. Zbl0928.12003MR1638477
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.