Displaying similar documents to “The p -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large”

On congruent primes and class numbers of imaginary quadratic fields

Nils Bruin, Brett Hemenway (2013)

Acta Arithmetica

Similarity:

We consider the problem of determining whether a given prime p is a congruent number. We present an easily computed criterion that allows us to conclude that certain primes for which congruency was previously undecided, are in fact not congruent. As a result, we get additional information on the possible sizes of Tate-Shafarevich groups of the associated elliptic curves. We also present a related criterion for primes p such that 16 divides the class number of the imaginary quadratic field...

The Brauer–Manin obstruction for curves having split Jacobians

Samir Siksek (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let X 𝒜 be a non-constant morphism from a curve X to an abelian variety 𝒜 , all defined over a number field k . Suppose that X is a counterexample to the Hasse principle. We give sufficient conditions for the failure of the Hasse principle on X to be accounted for by the Brauer–Manin obstruction. These sufficiency conditions are slightly stronger than assuming that 𝒜 ( k ) and Ш ( 𝒜 / k ) are finite.

The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant, Delphy Shaulis (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

On the diophantine equation x 2 = y p + 2 k z p

Samir Siksek (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers x , y , z if p 7 is prime and k 2 . From this we deduce some results about special cases of this equation that have been studied in the literature. In particular, we are able to combine our result with previous results of Arif and Abu Muriefah, and those of Cohn to obtain a complete solution for the equation...

Levi's forms of higher codimensional submanifolds

Andrea D'Agnolo, Giuseppe Zampieri (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let X C n , let M be a C 2 hypersurface of X , S be a C 2 submanifold of M . Denote by L M the Levi form of M at z 0 S . In a previous paper [3] two numbers s ± S , p , p T ˙ S * X z 0 are defined; for S = M they are the numbers of positive and negative eigenvalues for L M . For S M , p S × M T ˙ * S X ) , we show here that s ± S , p are still the numbers of positive and negative eigenvalues for L M when restricted to T z 0 C S . Applications to the concentration in degree for microfunctions at the boundary are given.

Iwasawa theory for elliptic curves over imaginary quadratic fields

Massimo Bertolini (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Let E be an elliptic curve over , let K be an imaginary quadratic field, and let K be a p -extension of K . Given a set Σ of primes of K , containing the primes above p , and the primes of bad reduction for E , write K Σ for the maximal algebraic extension of K which is unramified outside Σ . This paper is devoted to the study of the structure of the cohomology groups H i ( K Σ / K , E p ) for i = 1 , 2 , and of the p -primary Selmer group Sel p ( E / K ) , viewed as discrete modules over the Iwasawa algebra of K / K . ...