Counting invertible matrices and uniform distribution

Christian Roettger[1]

  • [1] Iowa State University 396 Carver Hall 50011 Ames, IA

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 301-322
  • ISSN: 1246-7405

Abstract

top
Consider the group SL 2 ( O K ) over the ring of algebraic integers of a number field K . Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let SL 2 ( O K , t ) be the number of matrices in SL 2 ( O K ) with height bounded by t . We determine the asymptotic behaviour of SL 2 ( O K , t ) as t goes to infinity including an error term, SL 2 ( O K , t ) = C t 2 n + O ( t 2 n - η ) with n being the degree of K . The constant C involves the discriminant of K , an integral depending only on the signature of K , and the value of the Dedekind zeta function of K at s = 2 . We use the theory of uniform distribution and discrepancy to obtain the error term. Then we discuss applications to counting problems concerning matrices in the general linear group, units in certain integral group rings and integral normal bases.

How to cite

top

Roettger, Christian. "Counting invertible matrices and uniform distribution." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 301-322. <http://eudml.org/doc/249421>.

@article{Roettger2005,
abstract = {Consider the group $\operatorname\{SL\}_2(\mathbf\{O\}_K)$ over the ring of algebraic integers of a number field $K$. Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let $\operatorname\{SL\}_2(\mathbf\{O\}_K,t)$ be the number of matrices in $\operatorname\{SL\}_2(\mathbf\{O\}_K)$ with height bounded by $t$. We determine the asymptotic behaviour of $\operatorname\{SL\}_2(\mathbf\{O\}_K,t)$ as $t$ goes to infinity including an error term,\[ \operatorname\{SL\}\_2(\mathbf\{O\}\_K,t)= C t^\{2n\} + O(t^\{2n-\eta \}) \]with $n$ being the degree of $K$. The constant $C$ involves the discriminant of $K$, an integral depending only on the signature of $K$, and the value of the Dedekind zeta function of $K$ at $s=2$. We use the theory of uniform distribution and discrepancy to obtain the error term. Then we discuss applications to counting problems concerning matrices in the general linear group, units in certain integral group rings and integral normal bases.},
affiliation = {Iowa State University 396 Carver Hall 50011 Ames, IA},
author = {Roettger, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {matrices; uniform distribution; counting problems},
language = {eng},
number = {1},
pages = {301-322},
publisher = {Université Bordeaux 1},
title = {Counting invertible matrices and uniform distribution},
url = {http://eudml.org/doc/249421},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Roettger, Christian
TI - Counting invertible matrices and uniform distribution
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 301
EP - 322
AB - Consider the group $\operatorname{SL}_2(\mathbf{O}_K)$ over the ring of algebraic integers of a number field $K$. Define the height of a matrix to be the maximum over all the conjugates of its entries in absolute value. Let $\operatorname{SL}_2(\mathbf{O}_K,t)$ be the number of matrices in $\operatorname{SL}_2(\mathbf{O}_K)$ with height bounded by $t$. We determine the asymptotic behaviour of $\operatorname{SL}_2(\mathbf{O}_K,t)$ as $t$ goes to infinity including an error term,\[ \operatorname{SL}_2(\mathbf{O}_K,t)= C t^{2n} + O(t^{2n-\eta }) \]with $n$ being the degree of $K$. The constant $C$ involves the discriminant of $K$, an integral depending only on the signature of $K$, and the value of the Dedekind zeta function of $K$ at $s=2$. We use the theory of uniform distribution and discrepancy to obtain the error term. Then we discuss applications to counting problems concerning matrices in the general linear group, units in certain integral group rings and integral normal bases.
LA - eng
KW - matrices; uniform distribution; counting problems
UR - http://eudml.org/doc/249421
ER -

References

top
  1. A. F. Beardon, The geometry of discrete groups. Springer, 1983. Zbl0528.30001MR698777
  2. R. W. Bruggeman, R. J. Miatello, Estimates of Kloosterman sums for groups of real rank one. Duke Math. J. 80 (1995), 105–137. Zbl0866.11049MR1360613
  3. C. J. Bushnell, Norm distribution in Galois orbits. J. reine angew. Math. 310 (1979), 81–99. Zbl0409.12010MR546665
  4. W. Duke, Z. Rudnick, P. Sarnak, Density of integer points on affine homogeneous varieties. Duke Math. J. 71 (1993), 143–179. Zbl0798.11024MR1230289
  5. G. Everest, Diophantine approximation and the distribution of normal integral generators. J. London Math. Soc. 28 (1983), 227–237. Zbl0521.12006MR713379
  6. G. Everest, Counting generators of normal integral bases. Amer. J. Math. 120 (1998), 1007–1018. Zbl0923.11156MR1646051
  7. G. Everest, K. Györy, Counting solutions of decomposable form equations. Acta Arith. 79 (1997), 173–191. Zbl0883.11015MR1438600
  8. E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung (German). Ann. Mat. Pura Appl., IV. Ser. (1961), 325–333. Zbl0103.27604MR139597
  9. E. Hlawka, Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim 1979. Zbl0406.10001MR542905
  10. L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Wiley, New York 1974. Zbl0281.10001MR419394
  11. P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46 (1982), 280–350. Zbl0497.30036MR661875
  12. R. W. K. Odoni, P. G. Spain, Equidistribution of values of rational functions ( mod p ) . Proc. R. Soc. Edinb. Sect. A 125 (1995), 911–929. Zbl0838.11077MR1361624
  13. I. Pacharoni, Kloosterman sums on number fields of class number one. Comm. Algebra 26 (1998), 2653–2667. Zbl0910.11034MR1627912
  14. S. J. Patterson, The asymptotic distribution of Kloosterman sums. Acta Arith. 79 (1997), 205–219. Zbl0868.11036MR1438824
  15. C. Roettger, Counting normal integral bases in complex S 3 -extensions of the rationals. Tech. Rep. 416, University of Augsburg, 1999. 
  16. C. Roettger, Counting problems in algebraic number theory. PhD thesis, University of East Anglia, Norwich, 2000. 
  17. P. Samuel, Algebraic Number Theory. Hermann, Paris 1970. Zbl1037.11001
  18. C. L. Siegel, Lectures on the geometry of numbers. Springer, 1989. Zbl0691.10021MR1020761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.