Le théorème de Skolem-Noether pour les modules sur des anneaux principaux

Anne Cortella[1]; Jean-Pierre Tignol[2]

  • [1] UMR CNRS 6623, Laboratoire de Mathématiques Université de Franche-Comté 16 route de Gray F-25030 Besançon Cedex, France
  • [2] Département de Mathématiques Université Catholique de Louvain B-1348 Louvain-la-Neuve, Belgique

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 2, page 511-516
  • ISSN: 1246-7405

Abstract

top
Let k be a principal ideal domain and M a torsion k -module of finite type. We give an elementary proof of the fact that any k -algebra automorphism of R = End k M is inner.

How to cite

top

Cortella, Anne, and Tignol, Jean-Pierre. "Le théorème de Skolem-Noether pour les modules sur des anneaux principaux." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 511-516. <http://eudml.org/doc/249424>.

@article{Cortella2005,
abstract = {Soit $k$ un anneau principal et $M$ un $k$-module de torsion de type fini. Nous donnons une preuve élémentaire du fait que tout automorphisme de $k$-algèbre de $R=\operatorname\{End\}_\{k\}M$ est intérieur.},
affiliation = {UMR CNRS 6623, Laboratoire de Mathématiques Université de Franche-Comté 16 route de Gray F-25030 Besançon Cedex, France; Département de Mathématiques Université Catholique de Louvain B-1348 Louvain-la-Neuve, Belgique},
author = {Cortella, Anne, Tignol, Jean-Pierre},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {principal ideal domain; automorphism},
language = {fre},
number = {2},
pages = {511-516},
publisher = {Université Bordeaux 1},
title = {Le théorème de Skolem-Noether pour les modules sur des anneaux principaux},
url = {http://eudml.org/doc/249424},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Cortella, Anne
AU - Tignol, Jean-Pierre
TI - Le théorème de Skolem-Noether pour les modules sur des anneaux principaux
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 511
EP - 516
AB - Soit $k$ un anneau principal et $M$ un $k$-module de torsion de type fini. Nous donnons une preuve élémentaire du fait que tout automorphisme de $k$-algèbre de $R=\operatorname{End}_{k}M$ est intérieur.
LA - fre
KW - principal ideal domain; automorphism
UR - http://eudml.org/doc/249424
ER -

References

top
  1. R. Baer, Automorphism rings of primary abelian operator groups. Ann. Math. 44 (1943), 192–227. Zbl0061.05405MR8241
  2. R. Baer, Linear algebra and projective geometry. Academic Press (1952). Zbl0049.38103MR52795
  3. L. Fuchs, Infinite abelian groups, vol. 1. Academic Press (1970). Zbl0209.05503MR255673
  4. L. Fuchs, Infinite abelian groups, vol. 2. Academic Press (1973). Zbl0257.20035MR349869
  5. R. Goebel, Endomorphism rings of abelian groups. Lecture notes in math. 1006 (1983), 340–353. Zbl0516.20032MR722628
  6. I.M. Isaacs, Automorphisms of matrix algebras over commutative rings. Linear. Alg. Appli. 31 (1980), 215–231. Zbl0434.16015MR570392
  7. I. Kaplansky, Some results on abelian groups. Proc. Nat. Acad. Sci. USA 38 (1952), 538–540. Zbl0047.25804MR49189
  8. I. Kaplansky, Infinite abelian groups. Univ. Michigan Press (1954) ; rev. ed. 1969. Zbl0194.04402MR233887
  9. M.-A. Knus, Algebres d’azumaya et modules projectifs. Commen. Math. Helv. 45 (1970), 372–383. Zbl0205.34203
  10. T.Y. Lam, A first course in non-commutative rings. Springer-Verlag (1991). Zbl0728.16001MR1125071
  11. T.Y. Lam, Modules with isomorphic multiples and rings with isomorphic matrix rings, a survey. Monographies de l’enseign. math., Genève 35 (1999). Zbl0962.16002
  12. T.Y. Lam, Exercises in Classical Ring Theory. Springer-Verlag (1995). Zbl0823.16001MR1323431
  13. A.V. Mikhalev, Isomorphisms and anti-isomorphisms of endomorphism rings of modules. Proc. first international Tainan-Moscow alg. workshop, Berlin (1996). Zbl0881.16017MR1443438
  14. A. Rosenberg, D. Zelinsky, Automorphisms of separable algebras, Pacif. J. Math. 11 (1961), 1109–1117. Zbl0116.02501MR148709
  15. J. Thevenaz, G -algebras and modular representation theory. Oxford Sc. Publi. (1995). Zbl0837.20015MR1365077
  16. K.G. Wolfson, Anti-isomorphisms of endomorphism rings of locally free modules. Math. Z. 202 (1989), 1951–1959. Zbl0655.16016MR1013081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.