Binary quadratic forms and Eichler orders
- [1] Dept. Matemàtica Aplicada III EUPM Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 13-23
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAlsina, Montserrat. "Binary quadratic forms and Eichler orders." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 13-23. <http://eudml.org/doc/249437>.
@article{Alsina2005,
abstract = {For any Eichler order $\mathcal\{O\}(D,N)$ of level $N$ in an indefinite quaternion algebra of discriminant $D$ there is a Fuchsian group $\Gamma (D,N)\subseteq \operatorname\{SL\}(2,\mathbb\{R\})$ and a Shimura curve $X(D,N)$. We associate to $\mathcal\{O\}(D,N)$ a set $\mathcal\{H\}(\mathcal\{O\}(D,N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma (D,N)$, for primitive forms contained in $\mathcal\{H\}(\mathcal\{O\}(D,N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\operatorname\{SL\}(2,\mathbb\{Z\})$ is recovered. Explicit fundamental domains for $\Gamma (D,N)$ allow the characterization of the $\Gamma (D,N)$-reduced forms.},
affiliation = {Dept. Matemàtica Aplicada III EUPM Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain},
author = {Alsina, Montserrat},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {13-23},
publisher = {Université Bordeaux 1},
title = {Binary quadratic forms and Eichler orders},
url = {http://eudml.org/doc/249437},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Alsina, Montserrat
TI - Binary quadratic forms and Eichler orders
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 13
EP - 23
AB - For any Eichler order $\mathcal{O}(D,N)$ of level $N$ in an indefinite quaternion algebra of discriminant $D$ there is a Fuchsian group $\Gamma (D,N)\subseteq \operatorname{SL}(2,\mathbb{R})$ and a Shimura curve $X(D,N)$. We associate to $\mathcal{O}(D,N)$ a set $\mathcal{H}(\mathcal{O}(D,N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma (D,N)$, for primitive forms contained in $\mathcal{H}(\mathcal{O}(D,N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\operatorname{SL}(2,\mathbb{Z})$ is recovered. Explicit fundamental domains for $\Gamma (D,N)$ allow the characterization of the $\Gamma (D,N)$-reduced forms.
LA - eng
UR - http://eudml.org/doc/249437
ER -
References
top- M. Alsina, A. Arenas, P. Bayer (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001.
- M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. Zbl1073.11040MR2038122
- M. Alsina, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309–322. Zbl1024.11024MR1843547
- M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127–151. Zbl0068.03303MR80767
- A. P. Ogg, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277–307. Zbl0531.14014MR717598
- G. Shimura, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58–159. Zbl0204.07201MR204426
- M.F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980. Zbl0422.12008MR580949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.