Binary quadratic forms and Eichler orders

Montserrat Alsina[1]

  • [1] Dept. Matemàtica Aplicada III EUPM Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 13-23
  • ISSN: 1246-7405

Abstract

top
For any Eichler order 𝒪 ( D , N ) of level N in an indefinite quaternion algebra of discriminant D there is a Fuchsian group Γ ( D , N ) SL ( 2 , ) and a Shimura curve X ( D , N ) . We associate to 𝒪 ( D , N ) a set ( 𝒪 ( D , N ) ) of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to Γ ( D , N ) , for primitive forms contained in ( 𝒪 ( D , N ) ) . In particular, the classification theory of primitive integral binary quadratic forms by SL ( 2 , ) is recovered. Explicit fundamental domains for Γ ( D , N ) allow the characterization of the Γ ( D , N ) -reduced forms.

How to cite

top

Alsina, Montserrat. "Binary quadratic forms and Eichler orders." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 13-23. <http://eudml.org/doc/249437>.

@article{Alsina2005,
abstract = {For any Eichler order $\mathcal\{O\}(D,N)$ of level $N$ in an indefinite quaternion algebra of discriminant $D$ there is a Fuchsian group $\Gamma (D,N)\subseteq \operatorname\{SL\}(2,\mathbb\{R\})$ and a Shimura curve $X(D,N)$. We associate to $\mathcal\{O\}(D,N)$ a set $\mathcal\{H\}(\mathcal\{O\}(D,N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma (D,N)$, for primitive forms contained in $\mathcal\{H\}(\mathcal\{O\}(D,N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\operatorname\{SL\}(2,\mathbb\{Z\})$ is recovered. Explicit fundamental domains for $\Gamma (D,N)$ allow the characterization of the $\Gamma (D,N)$-reduced forms.},
affiliation = {Dept. Matemàtica Aplicada III EUPM Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain},
author = {Alsina, Montserrat},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {13-23},
publisher = {Université Bordeaux 1},
title = {Binary quadratic forms and Eichler orders},
url = {http://eudml.org/doc/249437},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Alsina, Montserrat
TI - Binary quadratic forms and Eichler orders
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 13
EP - 23
AB - For any Eichler order $\mathcal{O}(D,N)$ of level $N$ in an indefinite quaternion algebra of discriminant $D$ there is a Fuchsian group $\Gamma (D,N)\subseteq \operatorname{SL}(2,\mathbb{R})$ and a Shimura curve $X(D,N)$. We associate to $\mathcal{O}(D,N)$ a set $\mathcal{H}(\mathcal{O}(D,N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma (D,N)$, for primitive forms contained in $\mathcal{H}(\mathcal{O}(D,N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\operatorname{SL}(2,\mathbb{Z})$ is recovered. Explicit fundamental domains for $\Gamma (D,N)$ allow the characterization of the $\Gamma (D,N)$-reduced forms.
LA - eng
UR - http://eudml.org/doc/249437
ER -

References

top
  1. M. Alsina, A. Arenas, P. Bayer (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001. 
  2. M. Alsina, P. Bayer, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. Zbl1073.11040MR2038122
  3. M. Alsina, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309–322. Zbl1024.11024MR1843547
  4. M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127–151. Zbl0068.03303MR80767
  5. A. P. Ogg, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277–307. Zbl0531.14014MR717598
  6. G. Shimura, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58–159. Zbl0204.07201MR204426
  7. M.F. Vigneras, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980. Zbl0422.12008MR580949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.