Interpolation of entire functions on regular sparse sets and q -Taylor series

Michael Welter[1]

  • [1] Mathematisches Institut der Universität Bonn Beringstr. 4 53115 Bonn, Allemagne

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 397-404
  • ISSN: 1246-7405

Abstract

top
We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.

How to cite

top

Welter, Michael. "Interpolation of entire functions on regular sparse sets and $q$-Taylor series." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 397-404. <http://eudml.org/doc/249438>.

@article{Welter2005,
abstract = {We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.},
affiliation = {Mathematisches Institut der Universität Bonn Beringstr. 4 53115 Bonn, Allemagne},
author = {Welter, Michael},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {397-404},
publisher = {Université Bordeaux 1},
title = {Interpolation of entire functions on regular sparse sets and $q$-Taylor series},
url = {http://eudml.org/doc/249438},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Welter, Michael
TI - Interpolation of entire functions on regular sparse sets and $q$-Taylor series
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 397
EP - 404
AB - We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.
LA - eng
UR - http://eudml.org/doc/249438
ER -

References

top
  1. J.-P. Bézivin, Sur les points où une fonction analytique prend des valeurs entières. Ann. Inst. Fourier 40 (1990), 785–809. Zbl0719.30022MR1096591
  2. J.-P. Bézivin, Fonctions entières prenant des valeurs entières ainsi que ses dérivées sur des suites recurrentes binaires. Manuscripta math. 70 (1991), 325–338. Zbl0733.30022MR1089068
  3. P. Bundschuh, Arithmetische Eigenschaften ganzer Funktionen mehrerer Variablen. J. reine angew. Math. 313 (1980), 116–132. Zbl0411.10009MR552466
  4. M. E. H. Ismail, D. Stanton, q -Taylor theorems, polynomial expansions, and interpolation of entire functions. Journal of Approximation Theory 123 (2003), 125–146. Zbl1035.30025MR1985020
  5. S. Lang, Algebra. 3rd edition, Addison-Wesley (1993). Zbl0848.13001MR197234
  6. M. Welter, Ensembles régulièrement lacunaires d’entiers et fonctions entières arithmétiques. J. Number Th. 109 (2004), 163–181. Zbl1068.30020MR2098482

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.