Interpolation of entire functions on regular sparse sets and -Taylor series
- [1] Mathematisches Institut der Universität Bonn Beringstr. 4 53115 Bonn, Allemagne
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 397-404
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topWelter, Michael. "Interpolation of entire functions on regular sparse sets and $q$-Taylor series." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 397-404. <http://eudml.org/doc/249438>.
@article{Welter2005,
abstract = {We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.},
affiliation = {Mathematisches Institut der Universität Bonn Beringstr. 4 53115 Bonn, Allemagne},
author = {Welter, Michael},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {397-404},
publisher = {Université Bordeaux 1},
title = {Interpolation of entire functions on regular sparse sets and $q$-Taylor series},
url = {http://eudml.org/doc/249438},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Welter, Michael
TI - Interpolation of entire functions on regular sparse sets and $q$-Taylor series
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 397
EP - 404
AB - We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of integer-valued entire functions. Our proof rests on a very general interpolation result for entire functions.
LA - eng
UR - http://eudml.org/doc/249438
ER -
References
top- J.-P. Bézivin, Sur les points où une fonction analytique prend des valeurs entières. Ann. Inst. Fourier 40 (1990), 785–809. Zbl0719.30022MR1096591
- J.-P. Bézivin, Fonctions entières prenant des valeurs entières ainsi que ses dérivées sur des suites recurrentes binaires. Manuscripta math. 70 (1991), 325–338. Zbl0733.30022MR1089068
- P. Bundschuh, Arithmetische Eigenschaften ganzer Funktionen mehrerer Variablen. J. reine angew. Math. 313 (1980), 116–132. Zbl0411.10009MR552466
- M. E. H. Ismail, D. Stanton, -Taylor theorems, polynomial expansions, and interpolation of entire functions. Journal of Approximation Theory 123 (2003), 125–146. Zbl1035.30025MR1985020
- S. Lang, Algebra. 3rd edition, Addison-Wesley (1993). Zbl0848.13001MR197234
- M. Welter, Ensembles régulièrement lacunaires d’entiers et fonctions entières arithmétiques. J. Number Th. 109 (2004), 163–181. Zbl1068.30020MR2098482
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.