Counting cyclic quartic extensions of a number field
Henri Cohen; Francisco Diaz y Diaz; Michel Olivier[1]
- [1] Henri Cohen, Francisco Diaz y Diaz et Michel Olivier Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 475-510
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCohen, Henri, Diaz y Diaz, Francisco, and Olivier, Michel. "Counting cyclic quartic extensions of a number field." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 475-510. <http://eudml.org/doc/249445>.
@article{Cohen2005,
abstract = {In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.},
affiliation = {Henri Cohen, Francisco Diaz y Diaz et Michel Olivier Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE},
author = {Cohen, Henri, Diaz y Diaz, Francisco, Olivier, Michel},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {density; discriminants; cyclic quartic extensions; ramification},
language = {eng},
number = {2},
pages = {475-510},
publisher = {Université Bordeaux 1},
title = {Counting cyclic quartic extensions of a number field},
url = {http://eudml.org/doc/249445},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Cohen, Henri
AU - Diaz y Diaz, Francisco
AU - Olivier, Michel
TI - Counting cyclic quartic extensions of a number field
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 475
EP - 510
AB - In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.
LA - eng
KW - density; discriminants; cyclic quartic extensions; ramification
UR - http://eudml.org/doc/249445
ER -
References
top- S. Bosca, Comparing orders of Selmer groups. Jour. Théo. Nomb. Bordeaux 17 (2005), 467–473. Zbl1098.11056MR2211302
- H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Math. 193, Springer-Verlag, 2000. Zbl0977.11056MR1728313
- H. Cohen, High precision computation of Hardy–Littlewood constants, preprint available on the author’s web page.
- H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree, J. reine angew. Math. 550 (2002), 169–209. Zbl1004.11063MR1925912
- H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields, Indag. Math. (N.S.) 14 (2003), 183–196. Zbl1056.11058MR2026813
- H. Cohen, F. Diaz y Diaz, M. Olivier, Counting biquadratic extensions of a number field, preprint. Zbl1090.11068
- H. Cohen, F. Diaz y Diaz, M. Olivier, Counting discriminants of number fields, submitted. Zbl1193.11109
- B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions, J. reine angew. Math. 386 (1988), 116–138. Zbl0632.12007MR936994
- J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants, C. R. Acad. Sci. Paris 340 (2005), 411–414. Zbl1083.11069
- S. Mäki, On the density of abelian number fields, Thesis, Helsinki, 1985. Zbl0566.12001MR791087
- S. Mäki, The conductor density of abelian number fields, J. London Math. Soc. (2) 47 (1993), 18–30. Zbl0727.11041MR1200974
- G. Malle, On the distribution of Galois groups, J. Number Th. 92 (2002), 315–329. Zbl1022.11058MR1884706
- G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129–135. Zbl1099.11065MR2068887
- D. J. Wright, Distribution of discriminants of Abelian extensions, Proc. London Math. Soc. (3) 58 (1989), 17–50. Zbl0628.12006MR969545
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.