Effective bounds for the zeros of linear recurrences in function fields

Clemens Fuchs[1]; Attila Pethő[2]

  • [1] Institut für Mathematik Technische Universität Graz Steyrergasse 30 8010 Graz, Austria Current Address: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, Postbus 9512, 2300 RA Leiden, The Netherlands
  • [2] Institute of Informatics University of Debrecen, Debrecen Pf. 12 4010 Debrecen, Hungary

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 749-766
  • ISSN: 1246-7405

Abstract

top
In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.Moreover, we study similar problems in this context as the equation G n ( x ) = G m ( P ( x ) ) , ( m , n ) 2 , where ( G n ( x ) ) is a linear recurring sequence of polynomials and P ( x ) is a fixed polynomial. This problem was studied earlier in [14,15,16,17,32].

How to cite

top

Fuchs, Clemens, and Pethő, Attila. "Effective bounds for the zeros of linear recurrences in function fields." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 749-766. <http://eudml.org/doc/249449>.

@article{Fuchs2005,
abstract = {In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.Moreover, we study similar problems in this context as the equation $G_n(x)=G_m(P(x)), (m,n)\in \{\mathbb\{N\}\}^2$, where $(G_n(x))$ is a linear recurring sequence of polynomials and $P(x)$ is a fixed polynomial. This problem was studied earlier in [14,15,16,17,32].},
affiliation = {Institut für Mathematik Technische Universität Graz Steyrergasse 30 8010 Graz, Austria Current Address: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, Postbus 9512, 2300 RA Leiden, The Netherlands; Institute of Informatics University of Debrecen, Debrecen Pf. 12 4010 Debrecen, Hungary},
author = {Fuchs, Clemens, Pethő, Attila},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {749-766},
publisher = {Université Bordeaux 1},
title = {Effective bounds for the zeros of linear recurrences in function fields},
url = {http://eudml.org/doc/249449},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Fuchs, Clemens
AU - Pethő, Attila
TI - Effective bounds for the zeros of linear recurrences in function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 749
EP - 766
AB - In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.Moreover, we study similar problems in this context as the equation $G_n(x)=G_m(P(x)), (m,n)\in {\mathbb{N}}^2$, where $(G_n(x))$ is a linear recurring sequence of polynomials and $P(x)$ is a fixed polynomial. This problem was studied earlier in [14,15,16,17,32].
LA - eng
UR - http://eudml.org/doc/249449
ER -

References

top
  1. A. Baker, New advances in transcendence theory. Cambridge Univ. Press, Cambridge, 1988. Zbl0644.00005MR971989
  2. F. Beukers, The multiplicity of binary recurrences. Compositio Math. 40 (1980), 251–267. Zbl0396.10005MR563543
  3. F. Beukers, The zero-multiplicity of ternary recurrences. Compositio Math. 77 (1991), 165–177. Zbl0717.11012MR1091896
  4. F. Beukers, R. Tijdeman, On the multiplicities of binary complex recurrences. Compositio Math. 51 (1984), 193–213. Zbl0538.10014MR739734
  5. E. Bombieri, J. Müller, U. Zannier, Equations in one variable over function fields. Acta Arith. 99 (2001), 27–39. Zbl0973.11014MR1845361
  6. Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67–80. Zbl0861.11023MR1367579
  7. L. Cerlienco, M. Mignotte, F. Piras, Suites récurrentes linéaires: propriétés algébriques et arithmétiques. Enseign. Math. (2) 33 (1987), 67–108. Zbl0626.10008MR896384
  8. W. D. Brownawell, D. Masser, Vanishing sums in function fields. Math. Proc. Cambridge Philos. Soc. 100 (1986), 427–434. Zbl0612.10010MR857720
  9. J.-H. Evertse, On equations in two S -units over function fields of characteristic 0 . Acta Arith. 47 (1986), 233–253. Zbl0632.10015MR870667
  10. J.-H. Evertse, K. Győry, On the number of solutions of weighted unit equations. Compositio Math. 66 (1988), 329–354. Zbl0644.10015MR948309
  11. J.-H. Evertse, K. Győry, C. L. Stewart, R. Tijdeman, S -unit equations and their applications. In: New advances in transcendence theory (ed. by A. Baker), 110–174, Cambridge Univ. Press, Cambridge, 1988. Zbl0658.10023MR971998
  12. J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. Math. 155 (2002), 1–30. Zbl1026.11038MR1923966
  13. J.-H. Evertse, U. Zannier, Linear equations with unknowns from a multiplicative group in a function field. Preprint (http://www.math.leidenuniv.nl/~evertse/04-functionfields.ps). Zbl1185.11022
  14. C. Fuchs, On the equation G n ( x ) = G m ( P ( x ) ) for third order linear recurring sequences. Port. Math. (N.S.) 61 (2004), 1–24. Zbl1114.11030MR2040240
  15. C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation G n ( x ) = G m ( P ( x ) ) . Monatsh. Math. 137 (2002), 173–196. Zbl1026.11039MR1942618
  16. C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation G n ( x ) = G m ( P ( x ) ) : Higher-order recurrences. Trans. Amer. Math. Soc. 355 (2003), 4657–4681. Zbl1026.11040MR1990766
  17. C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation G n ( x ) = G m ( y ) with Q ( x , y ) = 0 . Preprint (http://finanz.math.tu-graz.ac.at/~fuchs/oegngmad4.ps). Zbl1215.11031
  18. M. Laurent, Équations exponentielles polynômes et suites récurrentes linéares. Astérisque 147–148 (1987), 121–139. Zbl0621.10014MR891424
  19. M. Laurent, Équations exponentielles-polynômes et suites récurrentes linéaires, II, J. Number Theory 31 (1989), 24-53. Zbl0661.10027MR978098
  20. R. C. Mason, Equations over Function Fields. Lecture Notes in Math. 1068 (1984), Springer, Berlin, 149–157. Zbl0544.10015MR756091
  21. R. C. Mason, Norm form equations I. J. Number Theory 22 (1986), 190–207. Zbl0578.10021MR826951
  22. H. P. Schlickewei, Multiplicities of recurrence sequences. Acta Math. 176 (1996), 171–243 Zbl0880.11016MR1397562
  23. H. P. Schlickewei, The multiplicity of binary recurrences. Invent. Math. 129 (1997), 11–36. Zbl0883.11008MR1464864
  24. H. P. Schlickewei, W. M. Schmidt, The intersection of recurrence sequences. Acta Arith. 72 (1995), 1–44. Zbl0851.11007MR1346803
  25. H. P. Schlickewei, W. M. Schmidt, The number of solutions of polynomial-exponential equations. Compositio Math. 120 (2000), 193–225. Zbl0949.11020MR1739179
  26. W. M. Schmidt, The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999), 243–282. Zbl0974.11013MR1710183
  27. W. M. Schmidt, Zeros of linear recurrence sequences. Publ. Math. Debrecen 56 (2000), 609–630. Zbl0963.11007MR1766002
  28. W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations. In: Diophantine Approximation (F. Amoroso, U. Zannier eds.), Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000, Springer-Verlag LNM 1819, 2003. Zbl1034.11011MR2009831
  29. T. N. Shorey, R. Tijdeman, Exponential Diophantine Equations. Cambridge, Univ. Press, 1986. Zbl0606.10011MR891406
  30. J. F. Voloch, Diagonal equations over function fields. Bol. Soc. Brasil. Mat. 16 (1985), 29–39. Zbl0612.10011MR847114
  31. U. Zannier, Some remarks on the S -unit equation in function fields. Acta Arith. 64 (1993), 87–98. Zbl0786.11019MR1220487
  32. U. Zannier, On the integer solutions of exponential equations in function fields. Ann. Inst. Fourier (Grenoble) 54 (2004), 849–874. Zbl1080.11028MR2111014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.