Effective bounds for the zeros of linear recurrences in function fields
Clemens Fuchs[1]; Attila Pethő[2]
- [1] Institut für Mathematik Technische Universität Graz Steyrergasse 30 8010 Graz, Austria Current Address: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, Postbus 9512, 2300 RA Leiden, The Netherlands
- [2] Institute of Informatics University of Debrecen, Debrecen Pf. 12 4010 Debrecen, Hungary
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 749-766
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFuchs, Clemens, and Pethő, Attila. "Effective bounds for the zeros of linear recurrences in function fields." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 749-766. <http://eudml.org/doc/249449>.
@article{Fuchs2005,
abstract = {In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.Moreover, we study similar problems in this context as the equation $G_n(x)=G_m(P(x)), (m,n)\in \{\mathbb\{N\}\}^2$, where $(G_n(x))$ is a linear recurring sequence of polynomials and $P(x)$ is a fixed polynomial. This problem was studied earlier in [14,15,16,17,32].},
affiliation = {Institut für Mathematik Technische Universität Graz Steyrergasse 30 8010 Graz, Austria Current Address: Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, Postbus 9512, 2300 RA Leiden, The Netherlands; Institute of Informatics University of Debrecen, Debrecen Pf. 12 4010 Debrecen, Hungary},
author = {Fuchs, Clemens, Pethő, Attila},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {749-766},
publisher = {Université Bordeaux 1},
title = {Effective bounds for the zeros of linear recurrences in function fields},
url = {http://eudml.org/doc/249449},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Fuchs, Clemens
AU - Pethő, Attila
TI - Effective bounds for the zeros of linear recurrences in function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 749
EP - 766
AB - In this paper, we use the generalisation of Mason’s inequality due to Brownawell and Masser (cf. [8]) to prove effective upper bounds for the zeros of a linear recurring sequence defined over a field of functions in one variable.Moreover, we study similar problems in this context as the equation $G_n(x)=G_m(P(x)), (m,n)\in {\mathbb{N}}^2$, where $(G_n(x))$ is a linear recurring sequence of polynomials and $P(x)$ is a fixed polynomial. This problem was studied earlier in [14,15,16,17,32].
LA - eng
UR - http://eudml.org/doc/249449
ER -
References
top- A. Baker, New advances in transcendence theory. Cambridge Univ. Press, Cambridge, 1988. Zbl0644.00005MR971989
- F. Beukers, The multiplicity of binary recurrences. Compositio Math. 40 (1980), 251–267. Zbl0396.10005MR563543
- F. Beukers, The zero-multiplicity of ternary recurrences. Compositio Math. 77 (1991), 165–177. Zbl0717.11012MR1091896
- F. Beukers, R. Tijdeman, On the multiplicities of binary complex recurrences. Compositio Math. 51 (1984), 193–213. Zbl0538.10014MR739734
- E. Bombieri, J. Müller, U. Zannier, Equations in one variable over function fields. Acta Arith. 99 (2001), 27–39. Zbl0973.11014MR1845361
- Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67–80. Zbl0861.11023MR1367579
- L. Cerlienco, M. Mignotte, F. Piras, Suites récurrentes linéaires: propriétés algébriques et arithmétiques. Enseign. Math. (2) 33 (1987), 67–108. Zbl0626.10008MR896384
- W. D. Brownawell, D. Masser, Vanishing sums in function fields. Math. Proc. Cambridge Philos. Soc. 100 (1986), 427–434. Zbl0612.10010MR857720
- J.-H. Evertse, On equations in two -units over function fields of characteristic . Acta Arith. 47 (1986), 233–253. Zbl0632.10015MR870667
- J.-H. Evertse, K. Győry, On the number of solutions of weighted unit equations. Compositio Math. 66 (1988), 329–354. Zbl0644.10015MR948309
- J.-H. Evertse, K. Győry, C. L. Stewart, R. Tijdeman, -unit equations and their applications. In: New advances in transcendence theory (ed. by A. Baker), 110–174, Cambridge Univ. Press, Cambridge, 1988. Zbl0658.10023MR971998
- J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. Math. 155 (2002), 1–30. Zbl1026.11038MR1923966
- J.-H. Evertse, U. Zannier, Linear equations with unknowns from a multiplicative group in a function field. Preprint (http://www.math.leidenuniv.nl/~evertse/04-functionfields.ps). Zbl1185.11022
- C. Fuchs, On the equation for third order linear recurring sequences. Port. Math. (N.S.) 61 (2004), 1–24. Zbl1114.11030MR2040240
- C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation . Monatsh. Math. 137 (2002), 173–196. Zbl1026.11039MR1942618
- C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation : Higher-order recurrences. Trans. Amer. Math. Soc. 355 (2003), 4657–4681. Zbl1026.11040MR1990766
- C. Fuchs, A. Pethő, R. F. Tichy, On the Diophantine equation with . Preprint (http://finanz.math.tu-graz.ac.at/~fuchs/oegngmad4.ps). Zbl1215.11031
- M. Laurent, Équations exponentielles polynômes et suites récurrentes linéares. Astérisque 147–148 (1987), 121–139. Zbl0621.10014MR891424
- M. Laurent, Équations exponentielles-polynômes et suites récurrentes linéaires, II, J. Number Theory 31 (1989), 24-53. Zbl0661.10027MR978098
- R. C. Mason, Equations over Function Fields. Lecture Notes in Math. 1068 (1984), Springer, Berlin, 149–157. Zbl0544.10015MR756091
- R. C. Mason, Norm form equations I. J. Number Theory 22 (1986), 190–207. Zbl0578.10021MR826951
- H. P. Schlickewei, Multiplicities of recurrence sequences. Acta Math. 176 (1996), 171–243 Zbl0880.11016MR1397562
- H. P. Schlickewei, The multiplicity of binary recurrences. Invent. Math. 129 (1997), 11–36. Zbl0883.11008MR1464864
- H. P. Schlickewei, W. M. Schmidt, The intersection of recurrence sequences. Acta Arith. 72 (1995), 1–44. Zbl0851.11007MR1346803
- H. P. Schlickewei, W. M. Schmidt, The number of solutions of polynomial-exponential equations. Compositio Math. 120 (2000), 193–225. Zbl0949.11020MR1739179
- W. M. Schmidt, The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999), 243–282. Zbl0974.11013MR1710183
- W. M. Schmidt, Zeros of linear recurrence sequences. Publ. Math. Debrecen 56 (2000), 609–630. Zbl0963.11007MR1766002
- W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations. In: Diophantine Approximation (F. Amoroso, U. Zannier eds.), Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000, Springer-Verlag LNM 1819, 2003. Zbl1034.11011MR2009831
- T. N. Shorey, R. Tijdeman, Exponential Diophantine Equations. Cambridge, Univ. Press, 1986. Zbl0606.10011MR891406
- J. F. Voloch, Diagonal equations over function fields. Bol. Soc. Brasil. Mat. 16 (1985), 29–39. Zbl0612.10011MR847114
- U. Zannier, Some remarks on the -unit equation in function fields. Acta Arith. 64 (1993), 87–98. Zbl0786.11019MR1220487
- U. Zannier, On the integer solutions of exponential equations in function fields. Ann. Inst. Fourier (Grenoble) 54 (2004), 849–874. Zbl1080.11028MR2111014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.