Bounds for the solutions of unit equations
Acta Arithmetica (1996)
- Volume: 74, Issue: 1, page 67-80
- ISSN: 0065-1036
Access Full Article
topHow to cite
topYann Bugeaud, and Kálmán Győry. "Bounds for the solutions of unit equations." Acta Arithmetica 74.1 (1996): 67-80. <http://eudml.org/doc/206838>.
@article{YannBugeaud1996,
author = {Yann Bugeaud, Kálmán Győry},
journal = {Acta Arithmetica},
keywords = {bounds; unit equations; -unit equations in two unknowns; linear forms in logarithms; homogeneous linear equations in -integers of bounded -norm},
language = {eng},
number = {1},
pages = {67-80},
title = {Bounds for the solutions of unit equations},
url = {http://eudml.org/doc/206838},
volume = {74},
year = {1996},
}
TY - JOUR
AU - Yann Bugeaud
AU - Kálmán Győry
TI - Bounds for the solutions of unit equations
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 1
SP - 67
EP - 80
LA - eng
KW - bounds; unit equations; -unit equations in two unknowns; linear forms in logarithms; homogeneous linear equations in -integers of bounded -norm
UR - http://eudml.org/doc/206838
ER -
References
top- [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
- [2] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. Zbl0221.12003
- [3] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. Zbl0774.11034
- [4] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd ed., Academic Press, New York, 1967.
- [5] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Austral. Math. Soc. 43 (1991), 325-329. Zbl0711.11040
- [6] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin, 1959.
- [7] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. 26 (1978), 291-292. Zbl0393.12003
- [8] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. Zbl0416.12001
- [9] A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith. 63 (1993), 15-20.
- [10] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
- [11] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. Zbl0658.10023
- [12] E. Friedman, Analytic formulas for regulators of number fields, Invent. Math. 98 (1989), 599-622. Zbl0694.12006
- [13] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600. Zbl0437.12004
- [14] K. Győry, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22/23 (1980), 225-233. Zbl0442.10010
- [15] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56 (1980). Zbl0455.10011
- [16] K. Győry, Some recent applications of S-unit equations, in: Journées Arithmétiques de Genève 1991, D. F. Coray and Y.-F. S. Pétermann (eds.), Astérisque 209 (1992), 17-38.
- [17] K. Győry, Bounds for the solutions of decomposable form equations, to appear. Zbl0973.11042
- [18] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. Zbl0798.11051
- [19] S. V. Kotov und L. A. Trelina, S-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math. 306 (1979), 28-41.
- [20] S. Lang, Fundamentals of Diophantine Geometry, Springer, Berlin, 1983. Zbl0528.14013
- [21] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. Zbl0759.11046
- [22] A. Pethő, Beiträge zur Theorie der S-Ordnungen, Acta Math. Acad. Sci. Hungar. 37 (1981), 51-57.
- [23] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
- [24] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011
- [25] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993.
- [26] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.
- [27] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276 Zbl0819.11025
Citations in EuDML Documents
top- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations
- Yann Bugeaud, Lower bounds for the greatest prime factor of
- Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek, Almost powers in the Lucas sequence
- Clemens Fuchs, Attila Pethő, Effective bounds for the zeros of linear recurrences in function fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.