Bounds for the solutions of unit equations

Yann Bugeaud; Kálmán Győry

Acta Arithmetica (1996)

  • Volume: 74, Issue: 1, page 67-80
  • ISSN: 0065-1036

How to cite

top

Yann Bugeaud, and Kálmán Győry. "Bounds for the solutions of unit equations." Acta Arithmetica 74.1 (1996): 67-80. <http://eudml.org/doc/206838>.

@article{YannBugeaud1996,
author = {Yann Bugeaud, Kálmán Győry},
journal = {Acta Arithmetica},
keywords = {bounds; unit equations; -unit equations in two unknowns; linear forms in logarithms; homogeneous linear equations in -integers of bounded -norm},
language = {eng},
number = {1},
pages = {67-80},
title = {Bounds for the solutions of unit equations},
url = {http://eudml.org/doc/206838},
volume = {74},
year = {1996},
}

TY - JOUR
AU - Yann Bugeaud
AU - Kálmán Győry
TI - Bounds for the solutions of unit equations
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 1
SP - 67
EP - 80
LA - eng
KW - bounds; unit equations; -unit equations in two unknowns; linear forms in logarithms; homogeneous linear equations in -integers of bounded -norm
UR - http://eudml.org/doc/206838
ER -

References

top
  1. [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  2. [2] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. Zbl0221.12003
  3. [3] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. Zbl0774.11034
  4. [4] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd ed., Academic Press, New York, 1967. 
  5. [5] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Austral. Math. Soc. 43 (1991), 325-329. Zbl0711.11040
  6. [6] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin, 1959. 
  7. [7] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. 26 (1978), 291-292. Zbl0393.12003
  8. [8] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. Zbl0416.12001
  9. [9] A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith. 63 (1993), 15-20. 
  10. [10] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204. Zbl0746.11020
  11. [11] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. Zbl0658.10023
  12. [12] E. Friedman, Analytic formulas for regulators of number fields, Invent. Math. 98 (1989), 599-622. Zbl0694.12006
  13. [13] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600. Zbl0437.12004
  14. [14] K. Győry, On the solutions of linear diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22/23 (1980), 225-233. Zbl0442.10010
  15. [15] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56 (1980). Zbl0455.10011
  16. [16] K. Győry, Some recent applications of S-unit equations, in: Journées Arithmétiques de Genève 1991, D. F. Coray and Y.-F. S. Pétermann (eds.), Astérisque 209 (1992), 17-38. 
  17. [17] K. Győry, Bounds for the solutions of decomposable form equations, to appear. Zbl0973.11042
  18. [18] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. Zbl0798.11051
  19. [19] S. V. Kotov und L. A. Trelina, S-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math. 306 (1979), 28-41. 
  20. [20] S. Lang, Fundamentals of Diophantine Geometry, Springer, Berlin, 1983. Zbl0528.14013
  21. [21] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. Zbl0759.11046
  22. [22] A. Pethő, Beiträge zur Theorie der S-Ordnungen, Acta Math. Acad. Sci. Hungar. 37 (1981), 51-57. 
  23. [23] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
  24. [24] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011
  25. [25] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993. 
  26. [26] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224. 
  27. [27] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276 Zbl0819.11025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.