Abstract -expansions and ultimately periodic representations
Michel Rigo[1]; Wolfgang Steiner[2]
- [1] Université de Liège, Institut de Mathématiques, Grande Traverse 12 (B 37), B-4000 Liège, Belgium.
- [2] TU Wien, Institut für Diskrete Mathematik und Geometrie, Wiedner Hauptstrasse 8-10/104, A-1040 Wien, Austria Universität Wien, Institut für Mathematik, Strudlhofgasse 4, A-1090 Wien, Austria.
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 283-299
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRigo, Michel, and Steiner, Wolfgang. "Abstract $\beta $-expansions and ultimately periodic representations." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 283-299. <http://eudml.org/doc/249459>.
@article{Rigo2005,
abstract = {For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is $\mathbb\{Q\}(\beta )$ if the dominating eigenvalue $\beta >1$ of the automaton accepting the language is a Pisot number. Moreover, if $\beta $ is neither a Pisot nor a Salem number, then there exist points in $\mathbb\{Q\}(\beta )$ which do not have any ultimately periodic representation.},
affiliation = {Université de Liège, Institut de Mathématiques, Grande Traverse 12 (B 37), B-4000 Liège, Belgium.; TU Wien, Institut für Diskrete Mathematik und Geometrie, Wiedner Hauptstrasse 8-10/104, A-1040 Wien, Austria Universität Wien, Institut für Mathematik, Strudlhofgasse 4, A-1090 Wien, Austria.},
author = {Rigo, Michel, Steiner, Wolfgang},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-expansions; numeration systems; periodic expansions; Pisot numbers},
language = {eng},
number = {1},
pages = {283-299},
publisher = {Université Bordeaux 1},
title = {Abstract $\beta $-expansions and ultimately periodic representations},
url = {http://eudml.org/doc/249459},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Rigo, Michel
AU - Steiner, Wolfgang
TI - Abstract $\beta $-expansions and ultimately periodic representations
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 283
EP - 299
AB - For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is $\mathbb{Q}(\beta )$ if the dominating eigenvalue $\beta >1$ of the automaton accepting the language is a Pisot number. Moreover, if $\beta $ is neither a Pisot nor a Salem number, then there exist points in $\mathbb{Q}(\beta )$ which do not have any ultimately periodic representation.
LA - eng
KW - -expansions; numeration systems; periodic expansions; Pisot numbers
UR - http://eudml.org/doc/249459
ER -
References
top- A. Bertrand, Développements en base de Pisot et répartition modulo . C. R. Acad. Sc. Paris 285 (1977), 419–421. Zbl0362.10040MR447134
- V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability. Latin American Theoretical INformatics (Valparaíso, 1995). Theoret. Comput. Sci. 181 (1997), 17–43. Zbl0957.11015MR1463527
- J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions. J. Theoret. Comput. Sci. 65 (1989), 153–169. Zbl0679.10010MR1020484
- S. Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press , New York (1974). Zbl0317.94045MR530382
- C. Frougny, B. Solomyak, On representation of integers in linear numeration systems. In Ergodic theory of actions (Warwick, 1993–1994), 345–368, London Math. Soc. Lecture Note Ser. 228, Cambridge Univ. Press, Cambridge (1996). Zbl0856.11007MR1411227
- C. Frougny, Numeration systems. In M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications 90. Cambridge University Press, Cambridge (2002).
- P. B. A. Lecomte, M. Rigo, Numeration systems on a regular language. Theory Comput. Syst. 34 (2001), 27–44. Zbl0969.68095MR1799066
- P. Lecomte, M. Rigo, On the representation of real numbers using regular languages. Theory Comput. Syst. 35 (2002), 13–38. Zbl0993.68050MR1879170
- P. Lecomte, M. Rigo, Real numbers having ultimately periodic representations in abstract numeration systems. Inform. and Comput. 192 (2004), 57–83. Zbl1055.11005MR2063624
- W. Parry, On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103
- A. Rényi, Representation for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. Zbl0079.08901MR97374
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. Zbl0494.10040MR576976
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.