Dynamical directions in numeration

Guy Barat[1]; Valérie Berthé[2]; Pierre Liardet[3]; Jörg Thuswaldner[4]

  • [1] Institut für Mathematik A T.U. Graz - Steyrergasse 30 8010 Graz (Austria)
  • [2] Université Montpellier II LIRMM — CNRS UMR 5506 161 rue Ada 34392 Montpellier Cedex 5 (France)
  • [3] Université de Provence CMI- 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
  • [4] Montan Universtät Leoben Chair of Mathematics and Statistics Franz-Josef-Straße 18 8700 Leoben (Austria)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 7, page 1987-2092
  • ISSN: 0373-0956

Abstract

top
This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β -numeration and its generalisations, abstract numeration systems and shift radix systems, as well as G -scales and odometers. A section of applications ends the paper.

How to cite

top

Barat, Guy, et al. "Dynamical directions in numeration." Annales de l’institut Fourier 56.7 (2006): 1987-2092. <http://eudml.org/doc/10197>.

@article{Barat2006,
abstract = {This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to $\beta $-numeration and its generalisations, abstract numeration systems and shift radix systems, as well as $G$-scales and odometers. A section of applications ends the paper.},
affiliation = {Institut für Mathematik A T.U. Graz - Steyrergasse 30 8010 Graz (Austria); Université Montpellier II LIRMM — CNRS UMR 5506 161 rue Ada 34392 Montpellier Cedex 5 (France); Université de Provence CMI- 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); Montan Universtät Leoben Chair of Mathematics and Statistics Franz-Josef-Straße 18 8700 Leoben (Austria)},
author = {Barat, Guy, Berthé, Valérie, Liardet, Pierre, Thuswaldner, Jörg},
journal = {Annales de l’institut Fourier},
keywords = {Numeration; fibred systems; symbolic dynamics; odometers; numeration scales; subshifts; $f$-expansions; $\beta $-numeration; sum-of-digits function; abstract number systems; canonical numeration systems; shift radix systems; additive functions; tilings; Rauzy fractals; substitutive dynamical systems; bibliography; numeration; -expansions; -numeration},
language = {eng},
number = {7},
pages = {1987-2092},
publisher = {Association des Annales de l’institut Fourier},
title = {Dynamical directions in numeration},
url = {http://eudml.org/doc/10197},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Barat, Guy
AU - Berthé, Valérie
AU - Liardet, Pierre
AU - Thuswaldner, Jörg
TI - Dynamical directions in numeration
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 1987
EP - 2092
AB - This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to $\beta $-numeration and its generalisations, abstract numeration systems and shift radix systems, as well as $G$-scales and odometers. A section of applications ends the paper.
LA - eng
KW - Numeration; fibred systems; symbolic dynamics; odometers; numeration scales; subshifts; $f$-expansions; $\beta $-numeration; sum-of-digits function; abstract number systems; canonical numeration systems; shift radix systems; additive functions; tilings; Rauzy fractals; substitutive dynamical systems; bibliography; numeration; -expansions; -numeration
UR - http://eudml.org/doc/10197
ER -

References

top
  1. J. Aaronson, Random f -expansions, Ann. Probab. 14 (1986), 1037-1057 Zbl0658.60050MR841603
  2. J. Aaronson, An Introduction to Infinite Ergodic Theory, 50 (1997), Amer. Math. Soc. Zbl0882.28013MR1450400
  3. B. Adamczewski, Répartitions des suites ( n α ) n et substitutions, Acta Arith. 112 (2004), 1-22 Zbl1060.11043MR2040589
  4. B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers II. Continued fractions, Acta Math. 195 (2005), 1-20 Zbl1195.11093MR2233683
  5. B. Adamczewski, Y. Bugeaud, On the decimal expansion of algebraic numbers, Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13 Zbl1138.11028MR2191109
  6. B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, (2006) Zbl1195.11094MR2250005
  7. S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996) (1998), 9-21, de Gruyter Zbl0919.11063MR1628829
  8. S. Akiyama, Self affine tilings and Pisot numeration systems, Number Theory and its Applications (Kyoto 1997) (1999), 7-17, Kluwer Acad. Publ. Zbl0999.11065MR1738803
  9. S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 11-26, de Gruyter, Berlin Zbl1001.11038MR1770451
  10. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), 283-308 Zbl1032.11033MR1883519
  11. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems. I, Acta Math. Hungar. 108 (2005), 207-238 Zbl1110.11003MR2162561
  12. S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems. II, Acta Arith. 121 (2006), 21-61 Zbl1142.11055MR2216302
  13. S. Akiyama, H. Brunotte, A. Pethő, Cubic CNS polynomials, notes on a conjecture of W. J. Gilbert, J. Math. Anal. Appl. 281 (2003), 402-415 Zbl1021.11005MR1980100
  14. S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks on a conjecture on certain integer sequences, Period. Math. Hungar. 52 (2006), 1-17 Zbl1121.11014MR2224891
  15. S. Akiyama, C. Frougny, J. Sakarovitch, On the representation of numbers in a rational base, Proceedings of Words 2005 (2005), 47-64, Monographies du LaCIM 36 UQaM, Montréal, Canada 
  16. S. Akiyama, N. Gjini, Connectedness of number-theoretic tilings, (2004) Zbl1162.11366MR2183177
  17. S. Akiyama, N. Gjini, On the connectedness of self-affine attractors, Arch. Math. (Basel) 82 (2004), 153-163 Zbl1063.37008MR2047669
  18. S. Akiyama, A. Pethő, On canonical number systems, Theoret. Comput. Sci. 270 (2002), 921-933 Zbl0988.68101MR1871104
  19. S. Akiyama, H. Rao, New criteria for canonical number systems, Acta Arith. 111 (2004), 5-25 Zbl1049.11008MR2038059
  20. S. Akiyama, H. Rao, W. Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), 135-160 Zbl1052.11055MR2059954
  21. S. Akiyama, T. Sadahiro, A self-similar tiling generated by the minimal Pisot number, Acta Math. Info. Univ. Ostraviensis 6 (1998), 9-26 Zbl1024.11066MR1822510
  22. S. Akiyama, K. Scheicher, Symmetric shift radix systems and finite expansions, (2004) Zbl1164.11007
  23. S. Akiyama, K. Scheicher, From number systems to shift radix systems, Nihonkai Math. J. 16 (2005), 95-106 Zbl1217.11008MR2217550
  24. S. Akiyama, J. M. Thuswaldner, Topological Properties of Two-Dimensional Number Systems, J. Théor. Nombres Bordeaux 12 (2000), 69-79 Zbl1012.11072MR1827838
  25. S. Akiyama, J. M. Thuswaldner, The topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl. 49 (2005), 1439-1485 Zbl1123.11004MR2149493
  26. J.-P. Allouche, P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991), 1-27 Zbl0763.11010MR1129977
  27. J.-P. Allouche, J. O. Shallit, Automatic sequences: Theory and Applications, (2003), Cambridge University Press Zbl1086.11015MR1997038
  28. Aristotle, The Physics, (1963), Harvard University Press Zbl53.0036.09
  29. P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320 Zbl0711.11008MR1025844
  30. P. Arnoux, V. Berthé, A. Hilion, A. Siegel, Fractal representation of the attractive lamination of an automorphism of the free group, (2006) Zbl1146.20020
  31. P. Arnoux, A. M. Fischer, The scenery flow for geometric structures on the torus: the linear setting, Chin. Ann. of Math. 22B (2001), 1-44 Zbl0993.37018
  32. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
  33. P. Arnoux, S. Ito, Y. Sano, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206 Zbl0987.11013MR1828491
  34. P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2 n + 1 , Bull. Soc. Math. France 119 (1991), 199-215 Zbl0789.28011MR1116845
  35. P. Arnoux, J.-C. Yoccoz, Construction de difféomorphismes pesudo-Anosov, C. R. Acad. Sci. Paris, Sér. A 292 (1981), 75-78 Zbl0478.58023MR610152
  36. A. Avizienis, Signed-digit number representations for fast parallel arithmetic, IEEE Trans. EC-10 (1961), 389-400 MR135213
  37. Beyond Quasicrystals, 3 (1995), AxelF.F. Zbl0880.00009MR1420414
  38. Directions in mathematical quasicrystals, 13 (2000), BaakeM.M., Providence, RI Zbl0955.00025MR1798986
  39. J.-C. Bajard, L.-S. Didier, P. Kornerup, An RNS Montgomery modular multiplication algorithm, IEEE Trans. Comput. 47 (1998), 766-776 MR1635515
  40. J.-C. Bajard, L. Imbert, G. A. Jullien, Parallel Montgomery Multiplication in GF ( 2 k ) using Trinomial Residue Arithmetic, Proceedings 17th IEEE symposium on Computer Arithmetic (2005), 164-171, MontuschiP.P. 
  41. J.-C. Bajard, L. Imbert, C. Nègre, Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, IEEE Transactions on Computers 55 (2006), 1167-1177 
  42. J.-C. Bajard, L. Imbert, C. Nègre, T. Plantard, Multiplication in GF ( p k ) for Elliptic Curve Cryptography, Proceedings 16th IEEE symposium on Computer Arithmetic (2003), 181-187 
  43. J.-C. Bajard, L. Imbert, T. Plantard, Modular number systems: beyond the Mersenne family, Selected areas in cryptography 3357 (2005), 159-169, Springer, Berlin Zbl1117.94008MR2181315
  44. J.-C. Bajard, S. Kla, J.-M. Muller, BKM: a new hardware algorithm for complex elementary functions, IEEE Trans. Comput. 43 (1994), 955-963 Zbl1073.68501MR1294301
  45. Calcul et arithmétique des ordinateurs, (2004), BajardJ.-C.J.-C. 
  46. V. Baker, M. Barge, J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts, (2006) Zbl1138.37008
  47. C. Bandt, Self-similar sets V. Integer matrices and fractal tilings of R n , Proc. Amer. Math. Soc. 112 (1991), 549-562 Zbl0743.58027MR1036982
  48. C. Bandt, Y. Wang, Disk-like Self-affine Tiles in 2 , Discrete Comput. Geom. 26 (2001), 591-601 Zbl1020.52018MR1863811
  49. G. Barat, T. Downarowicz, A. Iwanik, P. Liardet, Propriétés topologiques et combinatoires des échelles de numération, Colloq. Math. 84/85 (2000), 285-306 Zbl1001.54026MR1784198
  50. G. Barat, T. Downarowicz, P. Liardet, Dynamiques associées à une échelle de numération, Acta Arith. 103 (2002), 41-78 Zbl1002.37005MR1904893
  51. G. Barat, P. J. Grabner, An ergodic approach to a theorem of Delange Zbl1190.11044
  52. G. Barat, P. Liardet, Dynamical systems originated in the Ostrowski alpha-expansion, Ann. Univ. Sci. Budapest. Sect. Comput. 24 (2004), 133-184 Zbl1109.37010MR2168041
  53. M. Barge, B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002), 619-626 Zbl1028.37008MR1947456
  54. M. Barge, J. Kwapisz, Elements of the theory of unimodular Pisot substitutions with an application to β -shifts, Algebraic and topological dynamics 385 (2005), 89-99, Amer. Math. Soc. Zbl1116.37011MR2180231
  55. M. Barge, J. Kwapisz, Geometric theory of unimodular Pisot substitution, (2006) Zbl1152.37011MR2262174
  56. J. Bass, Suites uniformément denses, moyennes trigonométriques, fonctions pseudo-aléatoires, Bull. Soc. Math. France 87 (1959), 1-69 Zbl0092.33404MR123147
  57. N. L. Bassily, I. Kátai, Distribution of the values of q -additive functions on polynomial sequences, Acta Math. Hungar. 68 (1995), 353-361 Zbl0832.11035MR1333478
  58. M.-P. Béal, D. Perrin, Symbolic dynamics and finite automata, Handbook of formal languages, Vol. 2 (1997), 463-505, Springer, Berlin MR1470015
  59. R. Bellman, H. N. Shapiro, On a problem in additive number theory, Ann. of Math. 49 (1948), 333-340 Zbl0031.25401MR23864
  60. V. Berthé, Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 209-239 Zbl0994.68100MR1838931
  61. V. Berthé, L. Imbert, On Converting Numbers to the Double-Base Number System, Advanced Signal Processing Algorithms, Architecture and Implementations XIV 5559 (2004), 70-78, SPIE 
  62. V. Berthé, M. Rigo, Abstract numeration systems and tilings, Mathematical Foundations of Computer Science 2005 3618 (2005), 131-143, Springer Verlag Zbl1156.68443MR2237364
  63. V. Berthé, M. Rigo, Odometers on regular languages, (2006) Zbl1107.68046
  64. V. Berthé, A. Siegel, Purely periodic β -expansions in the Pisot non-unit case, (2005) Zbl1197.11139
  65. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (2005) Zbl1139.37008MR2191748
  66. M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, Pisot and Salem numbers, (1992), Birkhäuser Verlag, Basel Zbl0772.11041MR1187044
  67. A. Bertrand, Codage des endomorphisms de Pisot du tore [ 0 , 1 [ r et mesures simultanément invariantes pour deux homomorphismes du tore, Math. Z. 231 (1999), 369-381 Zbl1044.11072MR1703353
  68. A. Bertrand-Mathis, Développement en base θ ; répartition modulo un de la suite ( x θ n ) n 0 ; langages codés et θ -shift, Bull. Soc. Math. France 114 (1986), 271-323 Zbl0628.58024MR878240
  69. A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar. 54 (1989), 237-241 Zbl0695.10005MR1029085
  70. M. Bestvina, M. Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), 1-51 Zbl0757.57004MR1147956
  71. P. Billingsley, Ergodic theory and information, (1965), John Wiley & Sons Inc., New York Zbl0141.16702MR192027
  72. A. Bíró, J.-M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of / , Studia Scientiarum Math. Hungarica 38 (2001), 97-118 Zbl1006.11038MR1877772
  73. B. H. Bissinger, A Generalization of continued fractions, Bull. Amer. Math. Soc. 50 (1944), 868-876 Zbl0060.16302MR11338
  74. F. Blanchard, β -expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), 131-141 Zbl0682.68081MR1020481
  75. Topics in symbolic dynamics and applications, (2000), BlanchardF.F. 
  76. A. D. Booth, A signed binary multiplication technique, Duart. J. Mech. Appl. Math. 4 (1951), 236-240 Zbl0043.12902MR41526
  77. W. Bosma, Signed bits and fast exponentiation, J. Téor. Nombres Bordeaux 13 (2001), 27-41 Zbl1060.11082MR1838068
  78. W. Bosma, K. Dajani, K. Kraaikamp, Entropy quotients and correct digits in number-theoretic expansions, IMS Lecture Notes-Monograph series. Dynamics & Stochastics 48 (2006), 176-188 Zbl1128.11039
  79. A. Bovier, J.-M. Ghez, Spectral properties of one-dimensional Schrödinger operator with potentials generated by substitutions, Commun. Math. Phys. 158 (1993), 45-66 Zbl0820.35099MR1243715
  80. D. W. Boyd, Salem numbers of degree four have periodic expansions, Théorie des nombres (Quebec, PQ, 1987) (1989), 57-64, de Gruyter, Berlin Zbl0685.12004MR1024551
  81. D. W. Boyd, On the beta expansion for Salem numbers of degree 6 , Math. Comp. 65 (1996), 861-875 Zbl0848.11048MR1333306
  82. D. W. Boyd, The beta expansion for Salem numbers, Organic mathematics (Burnaby, BC, 1995) 20 (1997), 117-131, Amer. Math. Soc., Providence, RI Zbl1053.11536MR1483916
  83. H. Bruin, G. Keller, M. St.-Pierre, Adding machines and wild attractor, Ergodic Theory Dynam. Systems 18 (1996), 1267-1287 Zbl0898.58012MR1488317
  84. H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. (Szeged) 67 (2001), 521-527 Zbl0996.11067MR1876451
  85. H. Brunotte, Characterization of CNS trinomials, Acta Sci. Math. (Szeged) 68 (2002), 673-679 Zbl1026.11077MR1954540
  86. H. Brunotte, On cubic CNS polynomials with three real roots, Acta Sci. Math. (Szeged) 70 (2004), 495-504 Zbl1064.11005MR2107523
  87. V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p -recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 191-238 Zbl0804.11024MR1318968
  88. Č. Burdík, C. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals, J. Phys. A 31 (1998), 6449-6472 Zbl0941.52019MR1644115
  89. Č. Burdík, C. Frougny, J.-P. Gazeau, R. Krejcar, Beta-integers as a group, Dynamical systems (Luminy-Marseille, 1998) (2000), 125-136, World Sci. Publishing Zbl1196.11144MR1796153
  90. R. M. Burton, C. Kraaikamp, T. A. Schmidt, Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc. 352 (2000), 1277-1298 Zbl0938.11036MR1650073
  91. L.E. Bush, An asymptotic formula for the average sum of digits of integers, Amer. Math. Monthly 47 (1940), 154-156 Zbl0025.10601MR1225
  92. V. Canterini, Connectedness of geometric representation of substitutions of Pisot type, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 77-89 Zbl1031.37015MR2032327
  93. V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13 (2001), 353-369 Zbl1071.37011MR1879663
  94. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
  95. D.G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc. 8 (1933), 254-260 Zbl0007.33701
  96. N. Chekhova, P. Hubert, A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux 13 (2001), 371-394 Zbl1038.37010MR1879664
  97. M. Ciet, F. Sica, An analysis of double base number systems and a sublinear scalar multiplication algorithm, Progress in Cryptology-Proceedings of Mycrypt 2005 3715 (2005), 171-182, Springer Zbl1126.94326
  98. A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata, Math. Systems Theory 3 (1969), 186-192 Zbl0179.02501MR250789
  99. Handbook of elliptic and hyperelliptic curve cryptography, (2006), CohenH.H. Zbl1082.94001MR2162716
  100. J. Coquet, Sur les fonctions q -multiplicatives presque-périodiques, Note C. R. Acad. Sc. Paris 281 (1975), 63-65 Zbl0311.10050MR384736
  101. J. Coquet, Sur les fonctions q -multiplicatives pseudo-aléatoires, Note C. R. Acad. Sc. Paris 282 (1976), 175-178 Zbl0316.10032MR401691
  102. J. Coquet, Répartition modulo 1 des suites q -additives, Annales Soc. Math. Polonae, Series 1: Commentationes Mathematicae XXI (1979), 23-42 Zbl0434.10030MR577667
  103. J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), 161-176 Zbl0578.10009MR826949
  104. J. Coquet, T. Kamae, M. Mendès France, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France 105 (1977), 369-384 Zbl0383.10035MR472749
  105. J. Coquet, M. Mendès France, Suites à spectre vide et suites pseudo-aléatoires, Acta Arith. 32 (1977), 99-106 Zbl0303.10047MR435019
  106. J. Coquet, G. Rhin, P. Toffin, Fourier-Bohr spectrum of sequences related to continued fractions, J. Number Theory 17 (1983), 327-336 Zbl0521.10044MR724531
  107. I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, (1982), Springer Verlag, New York Zbl0493.28007MR832433
  108. K. Dajani, C. Kraaikamp, Ergodic Theory of Numbers, (2002), The Math. Association of America Zbl1033.11040MR1917322
  109. K. Dajani, C. Kraaikamp, Random β -expansions., Ergodic Theory Dynam. Systems 23 (2003), 461-479 Zbl1035.37006MR1972232
  110. K. Dajani, C. Kraaikamp, P. Liardet, Ergodic properties of signed binary expansions, Discrete and Continuous Dynamical Systems 15 (2006), 87-119 Zbl1115.37007MR2191387
  111. K. Dajani, C. Kraaikamp, B. Solomyak, The natural extension of the β -transformation, Acta Math. Hungar. 73 (1996), 97-109 Zbl0931.28014MR1415923
  112. F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), 221-239 Zbl0348.54034MR461470
  113. H. Delange, Sur les fonctions q -additives ou q -multiplicatives, Acta Arith. 21 (1972), 285-298 (errata insert) Zbl0219.10062MR309891
  114. H. Delange, La fonction sommatoire de la fonction “somme des chiffres”, Enseignement Math. 21 (1975), 31-47 Zbl0306.10005MR379414
  115. M. Denker, M. Keane, Almost topological dynamical systems, Israel J. Math. 34 (1979), 139-160 Zbl0441.28008MR571401
  116. S. Dimitrov, L. Imbert, P.K. Mishra, Efficient and Secure Elliptic Curve Point Multiplication using Double-Base Chains, Advances in Cryptology - ASIACRYPT 2005, LNCS 3788 (2005), 59-78, Springer Verlag Zbl1154.94388MR2236727
  117. A. H. Dooley, Markov odometers, Topics in dynamics and ergodic theory 310 (2003), 60-80, Cambridge Univ. Press, Cambridge Zbl1063.37005MR2052275
  118. M. Doudékova-Puydebois, On dynamics related to a class of numeration systems, Monatsh. Math. 135 (2002), 11-24 Zbl0992.11010MR1894292
  119. T. Downarowicz, Da capo al fine subshifts and odometers 
  120. T. Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and topological dynamics 385 (2005), 7-37, Amer. Math. Soc. Zbl1096.37002MR2180227
  121. M. Drmota, M. Fuchs, E. Manstavičius, Functional limit theorems for digital expansions, Acta Math. Hungar. 98 (2003), 175-201 Zbl1026.11013MR1956755
  122. M. Drmota, J. Rivat, The sum-of-digits function of squares, J. London Math. Soc. (2) 72 (2005), 273-292 Zbl1092.11006MR2156654
  123. M. Drmota, W. Steiner, The Zeckendorf expansion of polynomial sequences, J. Théor. Nombres Bordeaux 14 (2002), 439-475 Zbl1077.11005MR2040687
  124. M. Drmota, R. F. Tichy, Sequences, discrepancies and applications, 1651 (1997), Springer Verlag, Berlin Zbl0877.11043MR1470456
  125. J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169 Zbl0679.10010MR1020484
  126. J.-M. Dumont, A. Thomas, Digital sum moments and substitutions, Acta Arith. 64 (1993), 205-225 Zbl0774.11041MR1225425
  127. J.-M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits function, J. Number Theory 62 (1997), 19-38 Zbl0869.11009MR1430000
  128. Y. Dupain, Vera T. Sós, On the one-sided boundedness of discrepancy-function of the sequence { n α } , Acta Arith. 37 (1980), 363-374 Zbl0445.10041MR598889
  129. J. Duprat, Y. Herreros, S. Kla, New redundant representations of complex numbers and vectors, IEEE Trans. Comput. 42 (1993), 817-824 MR1252310
  130. F. Durand, A generalization of Cobham’s theorem, Theory Comput. Syst. 31 (1998), 169-185 Zbl0895.68081MR1491657
  131. F. Durand, Sur les ensembles d’entiers reconnaissables, J. Théor. Nombres Bordeaux 10 (1998), 65-84 Zbl1046.11500MR1827286
  132. F. Durand, Combinatorial and dynamical study of substitutions around the theorem of Cobham, Dynamics and randomness (Santiago, 2000) 7 (2002), 53-94, Kluwer Acad. Publ., Dordrecht Zbl1038.11016MR1975575
  133. F. Durand, A theorem of Cobham for non-primitive substitutions, Acta Arith. 104 (2002), 225-241 Zbl1014.11016MR1914721
  134. F. Durand, B. Host, C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993 Zbl1044.46543MR1709427
  135. P. Duvall, J. Keesling, A. Vince, The Hausdorff Dimension of the Boundary of a Self-Similar Tile, J. London Math. Soc. (2) 61 (2000), 748-760 Zbl0977.28002MR1766102
  136. H. Ei, S. Ito, H. Rao, Atomic surfaces, tilings and coincidences II: reducible case, (2006) Zbl1119.52013
  137. M. Einsiedler, K. Schmidt, Irreducibility, homoclinic points and adjoint actions of algebraic d -actions of rank one, Dynamics and randomness (Santiago, 2000) 7 (2002), 95-124, Kluwer Acad. Publ., Dordrecht Zbl1030.37016
  138. A. Elkharrat, C. Frougny, J.-P. Gazeau, J.-L. Verger-Gaugry, Symmetry Groups for beta-lattices, Theoret. Comp. Sci. 319 (2004), 281-305 Zbl1068.52028MR2074957
  139. C. J. Everett, Representations for real numbers, Bull. Amer. Math. Soc. 52 (1946), 861-869 Zbl0061.09407MR18221
  140. S. Fabre, Substitutions et β -systèmes de numération, Theoret. Comput. Sci. 137 (1995), 219-236 Zbl0872.11017MR1311222
  141. K. J. Falconer, Techniques in Fractal Geometry, (1997), John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto Zbl0869.28003MR1449135
  142. G. Farkas, Number systems in real quadratic fields, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 47-59 Zbl0963.11061MR2118245
  143. S. Ferenczi, Bounded remainder sets, Acta Arith. 61 (1992), 319-326 Zbl0774.11037MR1168091
  144. S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65 Zbl0883.28014MR1436950
  145. S. Ferenczi, C. Mauduit, A. Nogueira, Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. École Norm. Sup. 29 (1996), 519-533 Zbl0866.11023MR1386224
  146. L. Flatto, J. C. Lagarias, B. Poonen, The zeta function of the beta-transformation, Ergodic Theory Dynam. Systems 14 (1994), 237-266 Zbl0843.58106MR1279470
  147. A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114 Zbl0568.10005MR777556
  148. C. Frougny, Number representation and finite automata, Topics in symbolic dynamics and applications (Temuco, 1997) 279 (2000), 207-228, Cambridge Univ. Press Zbl0976.11003MR1776760
  149. C. Frougny, Numeration systems, 90 (2002), 230-268, Cambridge University Press Zbl1152.11303
  150. C. Frougny, B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), 713-723 Zbl0814.68065MR1200339
  151. C. Fuchs, R. Tijdeman, Substitutions, abstract number systems and the space-filling property, (2006) Zbl1194.11023
  152. J.-P. Gazeau, J.-L. Verger Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals, J. Théor. Nombres Bordeaux 16 (2004), 125-149 Zbl1075.11007MR2145576
  153. J.-P. Gazeau, J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on β -lattices with β a quadratic unitary Pisot number, (2006) Zbl1119.52015
  154. W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl. 83 (1981), 264-274 Zbl0472.10011MR632342
  155. W. J. Gilbert, Complex Bases and Fractal Similarity, Ann. sc. math. Quebec 11 (1987), 65-77 Zbl0633.10008MR912163
  156. P. J. Grabner, C. Heuberger, On the number of optimal base 2 representations of integers, Designs, Codes and Cryptography 40 (2006), 25-39 Zbl1261.11003MR2226281
  157. P. J. Grabner, C. Heuberger, H. Prodinger, J. M. Thuswaldner, Analysis of linear combination algorithms in cryptography, ACM Trans. Algorithms 1 (2005), 123-142 Zbl1321.68514MR2163134
  158. P. J. Grabner, P. Kirschenhofer, H. Prodinger, The sum-of-digits function for complex bases, J. London Math. Soc. (2) 57 (1998), 20-40 Zbl0959.11045MR1624777
  159. P. J. Grabner, P. Liardet, R. F. Tichy, Odometers and systems of numeration, Acta Arith. 70 (1995), 103-123 Zbl0822.11008MR1322556
  160. P. J. Grabner, M. Rigo, Additive functions with respect to numeration systems on regular languages, Monatsh. Math. 139 (2003), 205-219 Zbl1125.11008MR1994380
  161. K. Gröchenig, A. Haas, Self-similar Lattice Tilings, J. Fourier Anal. Appl. 1 (1994), 131-170 Zbl0978.28500MR1348740
  162. V. Grünwald, Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale), Giornale di matematiche di Battaglini 23 (1885), 203-221,367 
  163. M. Hbaib, M. Mkaouar, Sur le beta-développement de 1 dans le corps des séries formelles Zbl1157.11004
  164. R. H. Herman, I. F. Putnam, C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864 Zbl0786.46053MR1194074
  165. C. Heuberger, R. Katti, H. Prodinger, X. Ruan, The alternating greedy expansion and applications to computing digit expansions from left-to-right in cryptography, Theoret. Comput. Sci. 341 (2005), 55-72 Zbl1071.94012MR2159644
  166. C. Heuberger, H. Prodinger, On Minimal Expansions in Redundant Number Systems: Algorithms and Quantitative Analysis, Computing 66 (2001), 377-393 Zbl1030.11003MR1842756
  167. C. Heuberger, H. Prodinger, Carry Propagation in Signed digit representations, European J. of Combin. 24 (2003), 293-320 Zbl1026.11015MR1969583
  168. E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. I, 115 (1979), Springer-Verlag Zbl0416.43001MR551496
  169. M. Hollander, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, (1996) 
  170. M. Hollander, B. Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dynam. Systems 23 (2003), 533-540 Zbl1031.11010MR1972237
  171. C. Holton, L. Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179 Zbl0931.11004MR1675970
  172. C. Holton, L. Q. Zamboni, Directed graphs and substitutions, Theory Comput. Syst. 34 (2001), 545-564 Zbl0993.68075MR1865811
  173. B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529-540 Zbl0625.28011MR873430
  174. B. Host, Représentation géométrique des substitutions sur 2 lettres, (1992) 
  175. B. Host, J.-F. Méla, F. Parreau, Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. France 119 (1991), 33-90 Zbl0748.43001MR1101939
  176. P. Hubert, A. Messaoudi, Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals, Acta Arithmetica 124 (2006), 1-15 Zbl1116.28009MR2262136
  177. A. Huszti, K. Scheicher, P. Surer, J.M. Thuswaldner, Three-dimensional symmetric shift radix systems Zbl1143.11006
  178. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747 Zbl0598.28011MR625600
  179. G. Ifrah, Histoire universelle des chiffres, (1994), Robert Laffont, Paris 
  180. K.-H Indlekofer, I. Kátai, P. Racsko, Some Remarks on Generalized Number Systems, Acta Sci. Math. (Szeged) 57 (1993), 543-553 Zbl0791.11037MR1243306
  181. M. Iosifescu, C. Kraaikamp, Metrical Theory of Continued Fractions, (2002), Kluwer Academic Publisher, Dordrecht Zbl1122.11047MR1960327
  182. S. Ito, A construction of transversal flows for maximal Markov automorphisms, Tokyo J. Math. 1 (1978), 305-324 Zbl0446.28017MR519199
  183. S. Ito, Some skew product transformations associated with continued fractions and their invariant measures, Tokyo J. Math. 9 (1986), 115-133 Zbl0606.10042MR852977
  184. S. Ito, On the fractal curves induced from the complex radix expansion, Tokyo J. Math. 12 (1989), 299-320 Zbl0698.28002MR1030497
  185. S. Ito, J. Fujii, H. Higashino, S.-I. Yasutomi, On simultaneous approximation to ( α , α 2 ) with α 3 + k α - 1 = 0 , J. Number Theory 99 (2003), 255-283 Zbl1135.11326MR1968452
  186. S. Ito, M. Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), 461-486 Zbl0734.28010MR1137652
  187. S. Ito, H. Nakada, Approximation of real numbers by the sequence { n α } and their metrical theory, Acta Math. Hung. 52 (1988), 91-100 Zbl0657.10034MR956144
  188. S. Ito, M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441-472 Zbl0805.11056MR1247666
  189. S. Ito, H. Rao, Purely periodic β -expansion with Pisot base, Proc. Amer. Math. Soc. 133 (2005), 953-964 Zbl1099.11062MR2117194
  190. S. Ito, H. Rao, Atomic surfaces, tilings and coincidences I. Irreducible case, Israel J. Math. 153 (2006), 129-156 Zbl1143.37013MR2254640
  191. S. Ito, Y. Sano, On periodic β -expansions of Pisot numbers and Rauzy fractals, Osaka J. Math. 38 (2001), 349-368 Zbl0991.11040MR1833625
  192. S. Ito, Y. Takahashi, Markov subshifts and realization of β -expansions, J. Math. Soc. Japan 26 (1974), 33-55 Zbl0269.28006MR346134
  193. J. Justin, G. Pirillo, Episturmian words: shifts, morphisms and numeration systems, Int. J. Found. Comput. Sci. 15 (2004), 329-348 Zbl1067.68115MR2071462
  194. S. Kakeya, On a generalized scale of notations, Japan J. Math 1 (1924), 95-108 Zbl50.0162.01
  195. T. Kamae, Mutual singularity of spectra of dynamical systems given by “sums of digits” to different bases, Dynamical systems, Vol. I—Warsaw (1977), 109-114, Soc. Math. France, Paris Zbl0371.28018MR485754
  196. T. Kamae, Numeration systems, fractals and stochastic processes, Israel J. Math. 149 (2005), 87-135 Zbl1155.37306MR2191211
  197. T. Kamae, Numeration systems as dynamical systems–Introduction, IMS Lecture Notes–Monograph series 48 (2006), 198-211 Zbl1122.37011
  198. I. Kátai, Number systems in imaginary quadratic fields, Ann. Univ. Sci. Budapest. Sect. Comput. 14 (1994), 91-103 Zbl0817.11046MR1319651
  199. I. Kátai, Generalized number systems and fractal geometry, (1995), Pécs: Janus Pannonius Tudományegyetem, 40 p. Zbl1029.11005
  200. I. Kátai, Generalized number systems in Euclidean spaces, Math. Comput. Modelling 38 (2003), 883-892 Zbl1083.11011MR2025175
  201. I. Kátai, I. Kőrnyei, On Number Systems in Algebraic Number Fields, Publ. Math. Debrecen 41 (1992), 289-294 Zbl0784.11049MR1189110
  202. I. Kátai, B. Kovács, Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99-107 Zbl0386.10007MR576942
  203. I. Kátai, B. Kovács, Canonical Number Systems in Imaginary Quadratic Fields, Acta Math. Hungar. 37 (1981), 159-164 Zbl0477.10012MR616887
  204. I. Kátai, J. Szabó, Canonical Number Systems for Complex Integers, Acta Sci. Math. (Szeged) 37 (1975), 255-260 Zbl0309.12001MR389759
  205. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
  206. Y. Katznelson, The action of diffeomorphism of the circle on the Lebesgue measure, J. Analyse Math. 36 (1979), 156-166 Zbl0446.28016MR581808
  207. R. Kenyon, A. Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), 357-372 Zbl0915.58077MR1619562
  208. H. Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution mod 1 , Acta Arith. 12 (1966/1967), 193-212 Zbl0144.28902MR209253
  209. B. P. Kitchens, Symbolic dynamics, (1998), Springer-Verlag, Berlin Zbl0892.58020MR1484730
  210. D. E. Knuth, An imaginary number system, ACM 3 (1960), 245-247 MR127508
  211. D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60 Zbl0633.10011MR947168
  212. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, (1998), Addison Wesley, London Zbl0895.68055MR633878
  213. S. Körmendi, Canonical number systems in ( 3 2 ) ., Acta Sci. Math. 50 (1986), 351-357 Zbl0616.10007MR882046
  214. S. Kotani, Jacobi matrices with random potential taking finitely many values, Rev. Math. Phys. 1 (1989), 129-133 Zbl0713.60074MR1041533
  215. A. Kovács, On the computation of attractors for invertible expanding linear operators in k , Publ. Math. Debrecen 56 (2000), 97-120 Zbl0999.11009MR1740496
  216. A. Kovács, Generalized binary number systems, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 20 (2001), 195-206 Zbl0988.11002MR2241084
  217. A. Kovács, Number expansions in lattices, Math. Comput. Modelling 38 (2003), 909-915 Zbl1100.11008MR2025177
  218. B. Kovács, Canonical Number Systems in Algebraic Number Fields, Acta Math. Hungar. 37 (1981), 405-407 Zbl0505.12001MR619892
  219. B. Kovács, CNS Rings, Colloquia Mathematica Societatis János Bolyai 34. Topics in Classical Number Theory (1981), Budapest Zbl0558.10006
  220. B. Kovács, CNS rings, Topics in classical number theory, Vol. I, II (Budapest, 1981) 34 (1984), 961-971, North-Holland, Amsterdam MR781170
  221. B. Kovács, A. Pethő, Canonical systems in the ring of integers, Publ. Math. Debrecen 30 (1983), 39-45 Zbl0539.10010MR733070
  222. B. Kovács, A. Pethő, Number Systems in Integral Domains, Especially in Orders of Algebraic Number Fields, Acta Sci. Math. (Szeged) 55 (1991), 286-299 Zbl0760.11002MR1152592
  223. B. Kovács, A. Pethő, On a representation of algebraic integers, Studia Sci. Math. Hungar. 27 (1992), 169-172 Zbl0805.11076MR1207568
  224. C. Kraaikamp, Metric and Arithmetic Results for Continued Fraction Expansions, (1990), Universiteit van Amsterdam, Thesis 
  225. L. Kuipers, H. Niederreiter, Uniform distribution of sequences, (1974), Wiley, New York Zbl0281.10001MR419394
  226. J. Lagarias, Y. Wang, Integral self-affine tiles in n I. Standard and Nonstandard Digit Sets, J. London Math. Soc. 54 (1996), 161-179 Zbl0893.52014MR1395075
  227. J. Lagarias, Y. Wang, Self-Affine Tiles in n , Adv. Math. 121 (1996), 21-49 Zbl0893.52013MR1399601
  228. J. Lagarias, Y. Wang, Integral self-affine tiles in n II. Lattice Tilings, J. Fourier Anal. Appl. 3 (1997), 83-102 Zbl0893.52015MR1428817
  229. J. C. Lagarias, Y. Wang, Substitution Delone sets, Discrete Comput. Geom. 29 (2003), 175-209 Zbl1037.52017MR1957227
  230. P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34 (2001), 27-44 Zbl0969.68095MR1799066
  231. P.B.A. Lecomte, M. Rigo, On the representation of real numbers using regular languages, Theory Comput. Syst. 35 (2002), 13-38 Zbl0993.68050MR1879170
  232. P.B.A. Lecomte, M. Rigo, Real numbers having ultimately periodic representations in abstract numeration systems, Inform. and Comput. 192 (2004), 57-83 Zbl1055.11005MR2063624
  233. J.-Y Lee, R.V Moody, B. Solomyak, Consequences of pure-point diffraction spectra for multiset substitution systems, Discrete and Computational Geometry 29 (2003), 525-560 Zbl1055.37019MR1976605
  234. V. Lefèvre, An Algorithm that Computes a Lower Bound on the Distance Between a Segment and 2 , Developments in Reliable Computing (1999), 203-212, Kluwer, Dordrecht, Netherlands Zbl0949.65013MR1744273
  235. V. Lefèvre, J.-M. Muller, A. Tisserand, Towards Correctly Rounded Transcendentals, IEEE Transactions on Computers 47 (1998), 1235-1243 
  236. E. Lesigne, C. Mauduit, Propriétés ergodiques des suites q -multiplicatives, Compositio Math. 100 (1996), 131-169 Zbl0853.11064MR1383463
  237. P. Liardet, Regularities of distribution, Compositio Mathematica 61 (1987), 267-293 Zbl0619.10053MR883484
  238. P. Liardet, Propriétés harmoniques de la numération suivant Jean Coquet, Colloque “Jean Coquet”, CIRM 23-27 sept. 1985, Publications Mathématiques d’Orsay, Orsay 88-02 (1988), 1-35 Zbl0713.11054MR952862
  239. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
  240. E. Lindenstrauss, K. Schmidt, Invariant sets and measures of nonexpansive group automorphisms, Israel J. Math. 144 (2004), 29-60 Zbl1076.28014MR2121533
  241. M. Lothaire, Combinatorics on words, 17 (1983), Addison-Wesley Publishing Co., Reading, Mass. Zbl0514.20045MR675953
  242. M. Lothaire, Algebraic combinatorics on words, 90 (2002), Cambridge University Press Zbl1001.68093MR1905123
  243. M. Lothaire, Applied combinatorics on words, 105 (2005), Cambridge University Press Zbl1133.68067MR2165687
  244. J. Luo, J. M. Thuswaldner, On the fundamental group of self-affine plane tiles, (2006) Zbl1119.52012
  245. E. Manstavičius, Probabilistic theory of additive functions related to systems of numeration, New trends in probability and statistics, Vol. 4 (Palanga, 1996) (1997), 413-429, VSP, Utrecht Zbl0964.11031MR1653594
  246. B. F. Martensen, Generalized balanced pair algorithm, Topology Proc. 28 (2004), 163-178 Zbl1077.37018MR2105455
  247. J.-L. Mauclaire, An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1, J. Théor. Nombres Bordeaux 12 (2000), 1-12 Zbl1020.11006MR1827834
  248. C. Mauduit, Caractérisation des ensembles normaux substitutifs, Invent. Math. 95 (1989), 133-147 Zbl0665.10035MR969415
  249. C. Mauduit, J. Rivat, Sur un problème de Gelfond : la somme des chiffres des nombres premiers, (2006) 
  250. M. Mendès France, Nombres normaux. Applications aux fonctions pseudo-aléatoires, J. Analyse Math. 20 (1967), 1-56 Zbl0161.05002MR220683
  251. M. Mendès France, Les suites à spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15 Zbl0252.10033MR319909
  252. A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998), 135-162 Zbl0918.11048MR1827290
  253. A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224 Zbl0968.28005MR1793161
  254. A. Messaoudi, Tribonacci multiplication, Appl. Math. Lett. 15 (2002), 981-985 Zbl1026.11024MR1925924
  255. Y. Meyer, Algebraic numbers and harmonic analysis, (1972), North-Holland Publishing Co. Zbl0267.43001MR485769
  256. Y. Meyer, Quasicrystals, diophantine approximation and algebraic numbers, Beyond quasicrystals (Les Houches, 1994) (1995), AxelF.F. Zbl0881.11059MR1420415
  257. R. V. Moody, Meyer sets and their duals, The Mathematics of long-range aperiodic order 13 (1997), 403-441, MoodyRobert V.R. V. Zbl0880.43008MR1460016
  258. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci. 99 (1992), 327-334 Zbl0763.68049MR1168468
  259. J.-M. Muller, Arithmétique des Ordinateurs, (1989), Masson, Paris 
  260. J.-M. Muller, Elementary functions, (1997), Birkhäuser Boston Inc., Boston, MA Zbl1089.65016MR1452106
  261. M. G. Nadkarni, Basic ergodic theory, (1998), Birkhäuser Verlag, Basel Zbl0908.28014MR1725389
  262. H. Nakada, S. Ito, S. Tanaka, On the invariant measure for the transformations associated with some real continued-fractions, Keio Engineering Reports 30 (1977), 159-175 Zbl0412.10037MR498461
  263. M. Osikawa, Point spectra of non-singular flows, Publ. Res. Inst. Math. Sci. 13 (1977/78), 167-172 Zbl0369.28016MR453981
  264. W. Parry, On the β -expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416 Zbl0099.28103MR142719
  265. W. Parry, Representations for real numbers, Acta Math. Acad. Sci. Hungar. 15 (1964), 95-105 Zbl0136.35104MR166332
  266. W. Penney, A “binary” system for complex numbers, J. Assoc. Comput. Math. 12 (1965), 247-248 Zbl0127.08803
  267. D. Perrin, J.-É. Pin, Infinite words, 141 (2004), Elsevier Zbl1094.68052
  268. K. Petersen, Ergodic theory, (1989), Cambridge University Press, Cambridge Zbl0676.28008MR1073173
  269. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational number theory (Debrecen, 1989) (1991), 31-43, de Gruyter, Berlin Zbl0733.94014
  270. M. Pollicott, M. Yuri, Dynamical systems and ergodic theory, (1998), Cambridge University Press, Cambridge Zbl0897.28009MR1627681
  271. B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315-3349 Zbl0984.11008MR1615950
  272. N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, 1794 (2002), Springer-Verlag, Berlin Zbl1014.11015MR1970385
  273. M. Queffélec, Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc. Math. France 107 (1979), 385-421 Zbl0435.42007MR557078
  274. M. Queffélec, Substitution Dynamical Systems – Spectral Analysis, 1294 (1987), Springer Verlag Zbl0642.28013MR924156
  275. M. Queffélec, Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier 37 (1987), 115-138 Zbl0597.10054MR898934
  276. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
  277. G. Rauzy, Ensembles à restes bornés, Seminar on number theory, 1983–1984 (Talence, 1983/1984) (1984), Univ. Bordeaux I, Talence Zbl0547.10044MR784071
  278. G. Rauzy, Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres (Talence, 1987–1988) (1988), Univ. Bordeaux I Zbl0726.11019
  279. G. Rauzy, Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988) (1990), 275-286, Springer Verlag Zbl0955.28501MR1040317
  280. G. W. Reitwiesner, Performing binary multiplication with the fewest possible additions and subtractions, (1957), Ballistic Research Laboratories, Aberdeen Proving Ground, Md. MR92242
  281. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493 Zbl0079.08901MR97374
  282. M. Rigo, Automates et systèmes de numération, Bull. Soc. Roy. Sci. Liège 73 (2004), 257-270 (2005) Zbl1161.68550MR2166204
  283. M. Rigo, W. Steiner, Abstract β -expansions and ultimately periodic representations, J. Number Theory 17 (2005), 283-299 Zbl1084.11059MR2152225
  284. E. A. Robinson, Symbolic dynamics and tilings of d , Symbolic dynamics and its applications 60 (2004), 81-119 Zbl1076.37010MR2078847
  285. S. W. Rosema, R. Tijdeman, The Tribonacci substitution, Integers 5 (2005) Zbl1099.11004MR2191759
  286. J. Sakarovitch, Éléments de théorie des automates, (2003), Vuibert informatique Zbl1178.68002
  287. Y. Sano, On purely periodic beta-expansions of Pisot numbers, Nagoya Math. J. 166 (2002), 183-207 Zbl1029.11040MR1908578
  288. K. Scheicher, Kanonische Ziffernsysteme und Automaten, Grazer Math. Ber. 333 (1997), 1-17 Zbl0905.11009MR1640469
  289. K. Scheicher, β -expansions in algebraic function fields over finite fields, (2006) Zbl1152.11037
  290. K. Scheicher, J. M. Thuswaldner, Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc. 133 (2002), 163-182 Zbl1001.68070MR1900260
  291. K. Scheicher, J. M. Thuswaldner, Digit systems in polynomial rings over finite fields, Finite Fields Appl. 9 (2003), 322-333 Zbl1031.11003MR1983052
  292. K. Scheicher, J. M. Thuswaldner, Neighbours of self-affine tiles in lattice tilings, Fractals in Graz 2001 (2003), 241-262, Birkhäuser, Basel Zbl1040.52013MR2091708
  293. K. Scheicher, J. M. Thuswaldner, On the characterization of canonical number systems, Osaka J. Math. 41 (2004), 327-351 Zbl1161.11305MR2069090
  294. K. Schmidt, Cocycles on ergodic transformation groups, 1 (1977), Macmillan Company of India, Ltd., Delhi Zbl0421.28017MR578731
  295. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278 Zbl0494.10040MR576976
  296. K. Schmidt, Dynamical systems of algebraic origin, 128 (1995), Birkhäuser Verlag, Basel Zbl0833.28001MR1350300
  297. K. Schmidt, Algebraic coding of expansive group automorphisms and two-sided beta-shifts, Monatsh. Math. 129 (2000), 37-61 Zbl1010.37005MR1741033
  298. I. Schur, Über Potenzreihen, die im Inneren des Einheitskreises beschränkt sind II, J. reine angew. Math. 148 (1918), 122-145 Zbl46.0475.01
  299. F. Schweiger, Ergodic theory of fibred systems and metric number theory, (1995), The Clarendon Press Oxford University Press, New York Zbl0819.11027MR1419320
  300. F. Schweiger, Multidimensional continued fractions, (2000), Oxford University Press, Oxford Zbl0981.11029MR2121855
  301. M. Senechal, Quasicrystals and geometry, (1995), Cambridge University Press, Cambridge Zbl0828.52007MR1340198
  302. N. Sidorov, Bijective and general arithmetic codings for Pisot toral automorphisms, J. Dynam. Control Systems 7 (2001), 447-472 Zbl1134.37313MR1854032
  303. N. Sidorov, An arithmetic group associated with a Pisot unit, and its symbolic-dynamical representation, Acta Arith. 101 (2002), 199-213 Zbl0988.11051MR1875839
  304. N. Sidorov, Arithmetic dynamics, Topics in dynamics and ergodic theory 310 (2003), 145-189, Cambridge University Press Zbl1051.37007MR2052279
  305. N. Sidorov, A. Vershik, Bijective arithmetic codings of the 2-torus, and binary quadratic forms, J. Dynam. Cont. Sys. 4 (1998), 365-400 Zbl0949.37023
  306. A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dynam. Systems 23 (2003), 1247-1273 Zbl1052.37009MR1997975
  307. A. Siegel, Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier 54 (2004), 288-299 Zbl1083.37009MR2073838
  308. A. Siegel, J. Thuswaldner, Topological properties of self-affine tiles arising from beta-numeration systems or substitutions, (2006) 
  309. V. F. Sirvent, The common dynamics of the Tribonacci substitutions, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 571-582 Zbl0987.37011MR1806937
  310. V. F. Sirvent, Geodesic laminations as geometric realizations of Pisot substitutions, Ergodic Theory Dynam. Systems 20 (2000), 1253-1266 Zbl0963.37013MR1779402
  311. V. F. Sirvent, B. Solomyak, Pure discrete spectrum for one-dimensional substitution systems of Pisot type, Canad. Math. Bull. 45 (2002), 697-710 Zbl1038.37008MR1941235
  312. V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-485 Zbl1048.37015MR1926787
  313. V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-485 Zbl1048.37015MR1926787
  314. J. Solinas, Low-weight binary representations for pairs of integers, (2001) 
  315. B. Solomyak, On the spectral theory of adic transformations, Representation theory and dynamical systems (1992), 217-230, Amer. Math. Soc., Providence, RI Zbl0770.28012MR1166205
  316. B. Solomyak, Substitutions, adic transformations, and beta-expansions, Contemporary mathematics 135 (1992), 361-372 Zbl0771.28013MR1185103
  317. B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. 68 (1994), 477-498 Zbl0820.30007MR1262305
  318. B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), 695-738 Zbl0884.58062MR1452190
  319. G. Steidl, On symmetric radix representation of Gaussian integers, BIT 29 (1989), 563-571 Zbl0685.12002MR1009656
  320. W. Steiner, Parry expansions of polynomial sequences, Integers 2 (2002) Zbl1107.11307MR1945950
  321. M. Stewart, Irregularities of uniform distribution, Acta Math. Acad. Scient. Hung. 37 (1981), 185-221 Zbl0475.10040MR616890
  322. K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, S.I.A.M. J. Appl. Math. 32 (1977), 717-730 Zbl0355.10012MR439735
  323. R. Strichartz, Y. Wang, Geometry of Self-Affine Tiles I, Indiana Univ. Math. J. 48 (1999), 1-23 Zbl0938.52017MR1722192
  324. P. Surer, New characterization results for shift radix systems Zbl1164.11012
  325. A. Süto, Schrödinger difference equation with deterministic ergodic potentials, Beyond Quasicrystals 3 (1995), Les éditions de Physique-Springer Zbl0884.34083MR1420428
  326. M. Thaler, Transformations on [ 0 , 1 ] with infinite invariant measures, Israel J. Math. 46 (1983), 67-96 Zbl0528.28011MR727023
  327. W. Thurston, Groups, Tilings and Finite State Automata, (1989) 
  328. J. M. Thuswaldner, Attractors of invertible expanding linear operators and number systems in 2 , Publ. Math. (Debrecen) 58 (2001), 423-440 Zbl1012.11009MR1831051
  329. J. M. Thuswaldner, Unimodular Pisot substitutions and their associated tiles, (2006) Zbl1161.37016
  330. J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-27 Zbl0162.06303MR233763
  331. J. J. P. Veerman, Hausdorff dimension of boundaries of self-affine tiles in n , Bol. Mex. Mat. 3 (1998), 1-24 Zbl0919.28006MR1658240
  332. J.-L. Verger-Gaugry, On Gaps in Rényi β -expansions of unity for β &gt; 1 an algebraic number, (2006) Zbl1177.11013
  333. J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, IRMA Lectures in Mathematics and Mathematical Physics, “Physics and Number Theory” 10 (2006), 39-78, NyssenL.L. Zbl1170.52303
  334. A. Vershik, N. Sidorov, Arithmetic expansions associated with the rotation of a circle and continued fractions, St. Petersburg Math. J. 5 (1994), 1121-1136 Zbl1043.11541MR1270063
  335. A. M. Vershik, A theorem on Markov periodic approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-673 Zbl0559.47006
  336. A. M. Vershik, Arithmetic isomorphism of hyperbolic automorphisms of a torus and of sofic shifts, Funktsional. Anal. i Prilozhen. 26 (1992), 22-27 Zbl0810.58031MR1189020
  337. J. Vidal, R. Mosseri, Generalized Rauzy tilings: construction and electronic properties, Materials Science and Engineering A 294–296 (2000), 572-575 
  338. J. Vidal, R. Mosseri, Generalized quasiperiodic Rauzy tilings, J. Phys. A 34 (2001), 3927-3938 Zbl1067.52019MR1840854
  339. A. Vince, Digit Tiling of Euclidean Space, Directions in Mathematical Quasicrystals (2000), 329-370, Amer. Math. Soc., Providence, RI Zbl0972.52012MR1798999
  340. P. Walters, An introduction to ergodic theory, (1982), Springer-Verlag, New York Zbl0475.28009MR648108
  341. Y. Wang, Self-Affine Tiles, Advances in Wavelet (1998), 261-285, Springer MR1688772
  342. N. Wiener, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions, J. Math. and Phys. 6 (1927), 145-157 Zbl53.0265.02
  343. E. Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1973/74), 507-528 Zbl0283.10032MR337868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.