Systems of quadratic diophantine inequalities

Wolfgang Müller[1]

  • [1] Institut für Statistik Technische Universität Graz 8010 Graz, Austria

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 217-236
  • ISSN: 1246-7405

Abstract

top
Let Q 1 , , Q r be quadratic forms with real coefficients. We prove that for any ϵ > 0 the system of inequalities | Q 1 ( x ) | < ϵ , , | Q r ( x ) | < ϵ has a nonzero integer solution, provided that the system Q 1 ( x ) = 0 , , Q r ( x ) = 0 has a nonsingular real solution and all forms in the real pencil generated by Q 1 , , Q r are irrational and have rank > 8 r .

How to cite

top

Müller, Wolfgang. "Systems of quadratic diophantine inequalities." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 217-236. <http://eudml.org/doc/249461>.

@article{Müller2005,
abstract = {Let $Q_1,\dots ,Q_r$ be quadratic forms with real coefficients. We prove that for any $\epsilon &gt;0$ the system of inequalities $|Q_1(x)|&lt;\epsilon ,\dots ,|Q_r(x)|&lt;\epsilon $ has a nonzero integer solution, provided that the system $Q_1(x)=0,\dots ,Q_r(x)=0$ has a nonsingular real solution and all forms in the real pencil generated by $Q_1,\dots ,Q_r$ are irrational and have rank $&gt; 8r$.},
affiliation = {Institut für Statistik Technische Universität Graz 8010 Graz, Austria},
author = {Müller, Wolfgang},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic forms; Diophantine inequalities; sieve method},
language = {eng},
number = {1},
pages = {217-236},
publisher = {Université Bordeaux 1},
title = {Systems of quadratic diophantine inequalities},
url = {http://eudml.org/doc/249461},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Müller, Wolfgang
TI - Systems of quadratic diophantine inequalities
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 217
EP - 236
AB - Let $Q_1,\dots ,Q_r$ be quadratic forms with real coefficients. We prove that for any $\epsilon &gt;0$ the system of inequalities $|Q_1(x)|&lt;\epsilon ,\dots ,|Q_r(x)|&lt;\epsilon $ has a nonzero integer solution, provided that the system $Q_1(x)=0,\dots ,Q_r(x)=0$ has a nonsingular real solution and all forms in the real pencil generated by $Q_1,\dots ,Q_r$ are irrational and have rank $&gt; 8r$.
LA - eng
KW - quadratic forms; Diophantine inequalities; sieve method
UR - http://eudml.org/doc/249461
ER -

References

top
  1. V. Bentkus, F. Götze, On the lattice point problem for ellipsoids. Acta Arith. 80 (1997), 101–125. Zbl0871.11069MR1450919
  2. V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms. Annales of Mathematics 150 (1999), 977–1027. Zbl0979.11048MR1740988
  3. E. Bombieri, H. Iwaniec, On the order of ζ ( 1 / 2 + i t ) . Ann. Scuola Norm Sup. Pisa (4) 13 (1996), 449–472. Zbl0615.10047
  4. J. Brüdern, R.J. Cook, On simultaneous diagonal equations and inequalities. Acta Arith. 62 (1992), 125–149. Zbl0774.11015MR1183985
  5. H. Davenport, Indefinite quadratic forms in many variables (II). Proc. London Math. Soc. 8 (1958), 109–126. Zbl0078.03901MR92808
  6. R. J. Cook, Simultaneous quadratic equations. Journal London Math. Soc. (2) 4 (1971), 319–326. Zbl0224.10021MR289406
  7. R. Dietmann, Systems of rational quadratic forms. Arch. Math. (Basel) 82 (2004), no. 6, 507–516. Zbl1087.11020MR2080049
  8. E. D. Freeman, Quadratic Diophantine Inequalities. Journal of Number Theory 89 (2001), 269–307. Zbl1008.11012MR1845239
  9. G. A. Margulis, Discrete subgroups and ergodic theory. In ”Number Theory, Trace Fromulas and Discrete Groups (Oslo, 1987)”, 377–398, Academic Press, Boston, 1989. Zbl0675.10010MR993328
  10. W. M. Schmidt, Simultaneous rational zeros of quadratic forms. Séminaire Delange-Pisot-Poitou (Théorie des Nombres), Paris 1980-1981, Progr. Math. 22 (1982), 281–307. Zbl0492.10017MR693325
  11. H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms. Acta Arith. 9 (1964), 261–270. Zbl0128.04702MR167461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.