Systems of quadratic diophantine inequalities
- [1] Institut für Statistik Technische Universität Graz 8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 217-236
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMüller, Wolfgang. "Systems of quadratic diophantine inequalities." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 217-236. <http://eudml.org/doc/249461>.
@article{Müller2005,
abstract = {Let $Q_1,\dots ,Q_r$ be quadratic forms with real coefficients. We prove that for any $\epsilon >0$ the system of inequalities $|Q_1(x)|<\epsilon ,\dots ,|Q_r(x)|<\epsilon $ has a nonzero integer solution, provided that the system $Q_1(x)=0,\dots ,Q_r(x)=0$ has a nonsingular real solution and all forms in the real pencil generated by $Q_1,\dots ,Q_r$ are irrational and have rank $> 8r$.},
affiliation = {Institut für Statistik Technische Universität Graz 8010 Graz, Austria},
author = {Müller, Wolfgang},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic forms; Diophantine inequalities; sieve method},
language = {eng},
number = {1},
pages = {217-236},
publisher = {Université Bordeaux 1},
title = {Systems of quadratic diophantine inequalities},
url = {http://eudml.org/doc/249461},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Müller, Wolfgang
TI - Systems of quadratic diophantine inequalities
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 217
EP - 236
AB - Let $Q_1,\dots ,Q_r$ be quadratic forms with real coefficients. We prove that for any $\epsilon >0$ the system of inequalities $|Q_1(x)|<\epsilon ,\dots ,|Q_r(x)|<\epsilon $ has a nonzero integer solution, provided that the system $Q_1(x)=0,\dots ,Q_r(x)=0$ has a nonsingular real solution and all forms in the real pencil generated by $Q_1,\dots ,Q_r$ are irrational and have rank $> 8r$.
LA - eng
KW - quadratic forms; Diophantine inequalities; sieve method
UR - http://eudml.org/doc/249461
ER -
References
top- V. Bentkus, F. Götze, On the lattice point problem for ellipsoids. Acta Arith. 80 (1997), 101–125. Zbl0871.11069MR1450919
- V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms. Annales of Mathematics 150 (1999), 977–1027. Zbl0979.11048MR1740988
- E. Bombieri, H. Iwaniec, On the order of . Ann. Scuola Norm Sup. Pisa (4) 13 (1996), 449–472. Zbl0615.10047
- J. Brüdern, R.J. Cook, On simultaneous diagonal equations and inequalities. Acta Arith. 62 (1992), 125–149. Zbl0774.11015MR1183985
- H. Davenport, Indefinite quadratic forms in many variables (II). Proc. London Math. Soc. 8 (1958), 109–126. Zbl0078.03901MR92808
- R. J. Cook, Simultaneous quadratic equations. Journal London Math. Soc. (2) 4 (1971), 319–326. Zbl0224.10021MR289406
- R. Dietmann, Systems of rational quadratic forms. Arch. Math. (Basel) 82 (2004), no. 6, 507–516. Zbl1087.11020MR2080049
- E. D. Freeman, Quadratic Diophantine Inequalities. Journal of Number Theory 89 (2001), 269–307. Zbl1008.11012MR1845239
- G. A. Margulis, Discrete subgroups and ergodic theory. In ”Number Theory, Trace Fromulas and Discrete Groups (Oslo, 1987)”, 377–398, Academic Press, Boston, 1989. Zbl0675.10010MR993328
- W. M. Schmidt, Simultaneous rational zeros of quadratic forms. Séminaire Delange-Pisot-Poitou (Théorie des Nombres), Paris 1980-1981, Progr. Math. 22 (1982), 281–307. Zbl0492.10017MR693325
- H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms. Acta Arith. 9 (1964), 261–270. Zbl0128.04702MR167461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.