On the lattice point problem for ellipsoids
Acta Arithmetica (1997)
- Volume: 80, Issue: 2, page 101-125
- ISSN: 0065-1036
Access Full Article
topHow to cite
topV. Bentkus, and F. Götze. "On the lattice point problem for ellipsoids." Acta Arithmetica 80.2 (1997): 101-125. <http://eudml.org/doc/207031>.
@article{V1997,
author = {V. Bentkus, F. Götze},
journal = {Acta Arithmetica},
keywords = {lattice points; ellipsoids; multidimensional spaces; multiplicative type inequality for trigonometric sums; uniform error bounds for ellipsoids; number of lattice points; double large sieve bounds},
language = {eng},
number = {2},
pages = {101-125},
title = {On the lattice point problem for ellipsoids},
url = {http://eudml.org/doc/207031},
volume = {80},
year = {1997},
}
TY - JOUR
AU - V. Bentkus
AU - F. Götze
TI - On the lattice point problem for ellipsoids
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 2
SP - 101
EP - 125
LA - eng
KW - lattice points; ellipsoids; multidimensional spaces; multiplicative type inequality for trigonometric sums; uniform error bounds for ellipsoids; number of lattice points; double large sieve bounds
UR - http://eudml.org/doc/207031
ER -
References
top- V. Bentkus and F. Götze (1994a), Optimal rates of convergence in the CLT for quadratic forms, preprint 94-063 SFB 343, Universität Bielefeld; Ann. Probab. 24 (1996), 466-490. Zbl0858.62010
- V. Bentkus and F. Götze (1994b), On the lattice point problem for ellipsoids, preprint 94-111 SFB 343, Universität Bielefeld.
- V. Bentkus and F. Götze (1995a), On the lattice point problem for ellipsoids, Russian Acad. Sci. Dokl. Math. 343, 439-440. Zbl0879.11053
- V. Bentkus and F. Götze (1995b), Optimal rates of convergence in Functional Limit Theorems for quadratic forms, preprint 95-091 SFB 343, Universität Bielefeld. Zbl0858.62010
- E. Bombieri and H. Iwaniec (1986), On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa (4) 13, 449-472. Zbl0615.10047
- B. Diviš and B. Novák (1974), On the lattice point theory of multidimensional ellipsoids, Acta Arith. 25, 199-212. Zbl0286.10025
- C. G. Esseen (1945), Fourier analysis of distribution functions, Acta Math. 77, 1-125. Zbl0060.28705
- F. Fricker (1982), Einführung in die Gitterpunktlehre, Birkhäuser, Basel. Zbl0489.10001
- F. Götze (1979), Asymptotic expansions for bivariate von Mises functionals, Z. Wahrsch. Verw. Gebiete 50, 333-355. Zbl0405.60009
- S. W. Graham and G. Kolesnik (1991), Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge. Zbl0713.11001
- E. Hlawka (1950), Über Integrale auf konvexen Körpern I, II, Monatsh. Math. 54, 1-36, 81-99. Zbl0036.30902
- V. Jarník (1928), Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Internat. Acad. Sci. Bohême, 10 pp.
- E. Krätzel (1988), Lattice Points, Kluwer, Dordrecht.
- E. Krätzel and G. Nowak (1991), Lattice points in large convex bodies, Monatsh. Math. 112, 61-72. Zbl0754.11027
- E. Krätzel and G. Nowak (1992), Lattice points in large convex bodies, II, Acta Arith. 62, 285-295. Zbl0769.11037
- E. Landau (1915), Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31, 458-476.
- E. Landau (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21, 126-132. Zbl50.0118.01
- E. Landau und A. Walfisz (1962), Ausgewählte Abhandlungen zur Gitterpunktlehre, (herausgeg. von A. Walfisz), Berlin.
- T. K. Matthes (1970), The multivariate Central Limit Theorem for regular convex sets, Ann. Probab. 3, 503-515. Zbl0347.60023
- B. Novák (1968), Verallgemeinerung eines Peterssonschen Satzes und Gitterpunkte mit Gewichten, Acta Arith. 13, 423-454. Zbl0159.06702
- H. Prawitz (1972), Limits for a distribution, if the characteristic function is given in a finite domain, Skand. Aktuarietidskr., 138-154. Zbl0275.60025
- A. Walfisz (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 19, 300-307. Zbl50.0116.01
- A. Walfisz (1927), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 27, 245-268. Zbl53.0158.02
- A. Walfisz (1957), Gitterpunkte in mehrdimensionalen Kugeln, Polish Sci. Publ., Warszawa. Zbl0088.03802
- H. Weyl (1915/16), Über die Gleichverteilung der Zahlen mod-Eins, Math. Ann. 77, 313-352.
- J. Yarnold (1972), Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set, Ann. Math. Statist. 43, 1566-1580. Zbl0256.62022
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.