On the lattice point problem for ellipsoids

V. Bentkus; F. Götze

Acta Arithmetica (1997)

  • Volume: 80, Issue: 2, page 101-125
  • ISSN: 0065-1036

How to cite

top

V. Bentkus, and F. Götze. "On the lattice point problem for ellipsoids." Acta Arithmetica 80.2 (1997): 101-125. <http://eudml.org/doc/207031>.

@article{V1997,
author = {V. Bentkus, F. Götze},
journal = {Acta Arithmetica},
keywords = {lattice points; ellipsoids; multidimensional spaces; multiplicative type inequality for trigonometric sums; uniform error bounds for ellipsoids; number of lattice points; double large sieve bounds},
language = {eng},
number = {2},
pages = {101-125},
title = {On the lattice point problem for ellipsoids},
url = {http://eudml.org/doc/207031},
volume = {80},
year = {1997},
}

TY - JOUR
AU - V. Bentkus
AU - F. Götze
TI - On the lattice point problem for ellipsoids
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 2
SP - 101
EP - 125
LA - eng
KW - lattice points; ellipsoids; multidimensional spaces; multiplicative type inequality for trigonometric sums; uniform error bounds for ellipsoids; number of lattice points; double large sieve bounds
UR - http://eudml.org/doc/207031
ER -

References

top
  1. V. Bentkus and F. Götze (1994a), Optimal rates of convergence in the CLT for quadratic forms, preprint 94-063 SFB 343, Universität Bielefeld; Ann. Probab. 24 (1996), 466-490. Zbl0858.62010
  2. V. Bentkus and F. Götze (1994b), On the lattice point problem for ellipsoids, preprint 94-111 SFB 343, Universität Bielefeld. 
  3. V. Bentkus and F. Götze (1995a), On the lattice point problem for ellipsoids, Russian Acad. Sci. Dokl. Math. 343, 439-440. Zbl0879.11053
  4. V. Bentkus and F. Götze (1995b), Optimal rates of convergence in Functional Limit Theorems for quadratic forms, preprint 95-091 SFB 343, Universität Bielefeld. Zbl0858.62010
  5. E. Bombieri and H. Iwaniec (1986), On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa (4) 13, 449-472. Zbl0615.10047
  6. B. Diviš and B. Novák (1974), On the lattice point theory of multidimensional ellipsoids, Acta Arith. 25, 199-212. Zbl0286.10025
  7. C. G. Esseen (1945), Fourier analysis of distribution functions, Acta Math. 77, 1-125. Zbl0060.28705
  8. F. Fricker (1982), Einführung in die Gitterpunktlehre, Birkhäuser, Basel. Zbl0489.10001
  9. F. Götze (1979), Asymptotic expansions for bivariate von Mises functionals, Z. Wahrsch. Verw. Gebiete 50, 333-355. Zbl0405.60009
  10. S. W. Graham and G. Kolesnik (1991), Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge. Zbl0713.11001
  11. E. Hlawka (1950), Über Integrale auf konvexen Körpern I, II, Monatsh. Math. 54, 1-36, 81-99. Zbl0036.30902
  12. V. Jarník (1928), Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Internat. Acad. Sci. Bohême, 10 pp. 
  13. E. Krätzel (1988), Lattice Points, Kluwer, Dordrecht. 
  14. E. Krätzel and G. Nowak (1991), Lattice points in large convex bodies, Monatsh. Math. 112, 61-72. Zbl0754.11027
  15. E. Krätzel and G. Nowak (1992), Lattice points in large convex bodies, II, Acta Arith. 62, 285-295. Zbl0769.11037
  16. E. Landau (1915), Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31, 458-476. 
  17. E. Landau (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 21, 126-132. Zbl50.0118.01
  18. E. Landau und A. Walfisz (1962), Ausgewählte Abhandlungen zur Gitterpunktlehre, (herausgeg. von A. Walfisz), Berlin. 
  19. T. K. Matthes (1970), The multivariate Central Limit Theorem for regular convex sets, Ann. Probab. 3, 503-515. Zbl0347.60023
  20. B. Novák (1968), Verallgemeinerung eines Peterssonschen Satzes und Gitterpunkte mit Gewichten, Acta Arith. 13, 423-454. Zbl0159.06702
  21. H. Prawitz (1972), Limits for a distribution, if the characteristic function is given in a finite domain, Skand. Aktuarietidskr., 138-154. Zbl0275.60025
  22. A. Walfisz (1924), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 19, 300-307. Zbl50.0116.01
  23. A. Walfisz (1927), Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Z. 27, 245-268. Zbl53.0158.02
  24. A. Walfisz (1957), Gitterpunkte in mehrdimensionalen Kugeln, Polish Sci. Publ., Warszawa. Zbl0088.03802
  25. H. Weyl (1915/16), Über die Gleichverteilung der Zahlen mod-Eins, Math. Ann. 77, 313-352. 
  26. J. Yarnold (1972), Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set, Ann. Math. Statist. 43, 1566-1580. Zbl0256.62022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.