On the Euclidean minimum of some real number fields
Eva Bayer-Fluckiger[1]; Gabriele Nebe[2]
- [1] Département de Mathématiques EPF Lausanne 1015 Lausanne Switzerland
- [2] Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen Germany
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 437-454
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBayer-Fluckiger, Eva, and Nebe, Gabriele. "On the Euclidean minimum of some real number fields." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 437-454. <http://eudml.org/doc/249464>.
@article{Bayer2005,
abstract = {General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.},
affiliation = {Département de Mathématiques EPF Lausanne 1015 Lausanne Switzerland; Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen Germany},
author = {Bayer-Fluckiger, Eva, Nebe, Gabriele},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Euclidean rings; thin fields; lattices; Minkowski's conjecture; real quadratic fields; cyclotomic fields},
language = {eng},
number = {2},
pages = {437-454},
publisher = {Université Bordeaux 1},
title = {On the Euclidean minimum of some real number fields},
url = {http://eudml.org/doc/249464},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Bayer-Fluckiger, Eva
AU - Nebe, Gabriele
TI - On the Euclidean minimum of some real number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 437
EP - 454
AB - General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.
LA - eng
KW - Euclidean rings; thin fields; lattices; Minkowski's conjecture; real quadratic fields; cyclotomic fields
UR - http://eudml.org/doc/249464
ER -
References
top- E. Bayer-Fluckiger, Lattices and number fields. Contemp. Math. 241 (1999), 69–84. Zbl0951.11016MR1718137
- E. Bayer-Fluckiger, Ideal lattices. A panorama of number theory or the view from Baker’s garden (Zürich, 1999), 168–184, Cambridge Univ. Press, Cambridge, 2002. Zbl1043.11057
- E. Bayer-Fluckiger, Upper bounds for Euclidean minima. J. Number Theory (to appear). Zbl1130.11066MR2274907
- J.W.S. Cassels, An introduction to the geometry of numbers. Springer Grundlehren 99 (1971). Zbl0209.34401MR306130
- J.H. Conway, N.J.A. Sloane, Low Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices. Proc. Royal Soc. London, Series A 436 (1992), 55–68. Zbl0747.11027MR1177121
- J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290 (1988). Zbl0634.52002MR920369
- P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North Holland (second edition, 1987) Zbl0611.10017MR893813
- The KANT Database of fields. http://www.math.tu-berlin.de/cgi-bin/kant/database.cgi.
- F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Expo. Math. 13 (1995), 385–416. (updated version available via http://public.csusm.edu/public/FranzL/publ.html). Zbl0843.11046MR1362867
- C.T. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension., Journal of the American Mathematical Society 18 (3) (2005), 711–734. Zbl1132.11034
- R. Quême, A computer algorithm for finding new euclidean number fields. J. Théorie de Nombres de Bordeaux 10 (1998), 33–48. Zbl0913.11056MR1827284
- E. Weiss, Algebraic number theory. McGraw-Hill Book Company (1963). Zbl0115.03601MR159805
- M. Dutour, A. Schürmann, F. Vallentin, A Generalization of Voronoi’s Reduction Theory and Applications, (preprint 2005). Zbl1186.11040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.