Perfect unary forms over real quadratic fields

Dan Yasaki[1]

  • [1] Department of Mathematics and Statistics The University of North Carolina at Greensboro Greensboro, NC 27412, USA

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 3, page 759-775
  • ISSN: 1246-7405

Abstract

top
Let F = ( d ) be a real quadratic field with ring of integers 𝒪 . In this paper we analyze the number h d of GL 1 ( 𝒪 ) -orbits of homothety classes of perfect unary forms over F as a function of d . We compute h d exactly for square-free d 200000 . By relating perfect forms to continued fractions, we give bounds on h d and address some questions raised by Watanabe, Yano, and Hayashi.

How to cite

top

Yasaki, Dan. "Perfect unary forms over real quadratic fields." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 759-775. <http://eudml.org/doc/275681>.

@article{Yasaki2013,
abstract = {Let $F = \mathbb\{Q\}(\sqrt\{d\})$ be a real quadratic field with ring of integers $\mathcal\{O\}$. In this paper we analyze the number $h_d$ of $\operatorname\{GL\}_1(\mathcal\{O\})$-orbits of homothety classes of perfect unary forms over $F$ as a function of $d$. We compute $h_d$ exactly for square-free $d \le 200000$. By relating perfect forms to continued fractions, we give bounds on $h_d$ and address some questions raised by Watanabe, Yano, and Hayashi.},
affiliation = {Department of Mathematics and Statistics The University of North Carolina at Greensboro Greensboro, NC 27412, USA},
author = {Yasaki, Dan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic forms; perfect forms; continued fractions; real quadratic fields; continued fraction},
language = {eng},
month = {11},
number = {3},
pages = {759-775},
publisher = {Société Arithmétique de Bordeaux},
title = {Perfect unary forms over real quadratic fields},
url = {http://eudml.org/doc/275681},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Yasaki, Dan
TI - Perfect unary forms over real quadratic fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 759
EP - 775
AB - Let $F = \mathbb{Q}(\sqrt{d})$ be a real quadratic field with ring of integers $\mathcal{O}$. In this paper we analyze the number $h_d$ of $\operatorname{GL}_1(\mathcal{O})$-orbits of homothety classes of perfect unary forms over $F$ as a function of $d$. We compute $h_d$ exactly for square-free $d \le 200000$. By relating perfect forms to continued fractions, we give bounds on $h_d$ and address some questions raised by Watanabe, Yano, and Hayashi.
LA - eng
KW - quadratic forms; perfect forms; continued fractions; real quadratic fields; continued fraction
UR - http://eudml.org/doc/275681
ER -

References

top
  1. Eva Bayer-Fluckiger and Gabriele Nebe, On the Euclidean minimum of some real number fields. J. Théor. Nombres Bordeaux, 17(2) (2005), 437–454. Zbl1161.11032MR2211300
  2. Paul E. Gunnells and Dan Yasaki, Hecke operators and Hilbert modular forms. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 387–401. Springer, Berlin, 2008. Zbl1205.11056MR2467860
  3. A. Hurwitz, Ueber die Reduction der binären quadratischen Formen. Math. Ann., 45(1) (1894), 85–117. Zbl25.0313.01MR1510855
  4. Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann., 141 (1960), 384–432. Zbl0095.25301MR124527
  5. Alar Leibak, The complete enumeration of binary perfect forms over the algebraic number field ( 6 ) . Proc. Estonian Acad. Sci. Phys. Math., 54(4) (2005), 212–234. Zbl1095.11023MR2190028
  6. Trygve Nagel, Zur arithmetik der polynome. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1 (1922), 178–193. 10.1007/BF02940590. MR3069398
  7. Heidrun E. Ong, Perfect quadratic forms over real-quadratic number fields. Geom. Dedicata, 20(1) (1986), 51–77. Zbl0582.10020MR823160
  8. Kenji Okuda and Syouji Yano, A generalization of Voronoï’s theorem to algebraic lattices. J. Théor. Nombres Bordeaux, 22(3) (2010), 727–740. Zbl1253.11072MR2769341
  9. Kenneth H. Rosen, Elementary number theory and its applications. Pearson, Reading, MA, sixth edition, 2010. Zbl0964.11002
  10. Achill Schürmann, Enumerating perfect forms. In Quadratic forms—algebra, arithmetic, and geometry, volume 493 of Contemp. Math., pages 359–377. Amer. Math. Soc., Providence, RI, 2009. Zbl1209.11063MR2537111
  11. François Sigrist, Cyclotomic quadratic forms. J. Théor. Nombres Bordeaux, 12(2) (2000), 519–530. Colloque International de Théorie des Nombres (Talence, 1999). Zbl0977.11029MR1823201
  12. G. Voronoǐ, Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math., 133 (1908), 97–178. Zbl38.0261.01
  13. Takao Watanabe, Syouji Yano, and Takuma Hayashi, Voronoï’s reduction theory of GL n over a totally real field. Preprint at http://www.math.sci.osaka-u.ac.jp/~twatanabe/voronoireduction.pdf. Zbl1298.11067MR3074816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.