Perfect unary forms over real quadratic fields
Dan Yasaki[1]
- [1] Department of Mathematics and Statistics The University of North Carolina at Greensboro Greensboro, NC 27412, USA
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 3, page 759-775
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topYasaki, Dan. "Perfect unary forms over real quadratic fields." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 759-775. <http://eudml.org/doc/275681>.
@article{Yasaki2013,
abstract = {Let $F = \mathbb\{Q\}(\sqrt\{d\})$ be a real quadratic field with ring of integers $\mathcal\{O\}$. In this paper we analyze the number $h_d$ of $\operatorname\{GL\}_1(\mathcal\{O\})$-orbits of homothety classes of perfect unary forms over $F$ as a function of $d$. We compute $h_d$ exactly for square-free $d \le 200000$. By relating perfect forms to continued fractions, we give bounds on $h_d$ and address some questions raised by Watanabe, Yano, and Hayashi.},
affiliation = {Department of Mathematics and Statistics The University of North Carolina at Greensboro Greensboro, NC 27412, USA},
author = {Yasaki, Dan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic forms; perfect forms; continued fractions; real quadratic fields; continued fraction},
language = {eng},
month = {11},
number = {3},
pages = {759-775},
publisher = {Société Arithmétique de Bordeaux},
title = {Perfect unary forms over real quadratic fields},
url = {http://eudml.org/doc/275681},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Yasaki, Dan
TI - Perfect unary forms over real quadratic fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 759
EP - 775
AB - Let $F = \mathbb{Q}(\sqrt{d})$ be a real quadratic field with ring of integers $\mathcal{O}$. In this paper we analyze the number $h_d$ of $\operatorname{GL}_1(\mathcal{O})$-orbits of homothety classes of perfect unary forms over $F$ as a function of $d$. We compute $h_d$ exactly for square-free $d \le 200000$. By relating perfect forms to continued fractions, we give bounds on $h_d$ and address some questions raised by Watanabe, Yano, and Hayashi.
LA - eng
KW - quadratic forms; perfect forms; continued fractions; real quadratic fields; continued fraction
UR - http://eudml.org/doc/275681
ER -
References
top- Eva Bayer-Fluckiger and Gabriele Nebe, On the Euclidean minimum of some real number fields. J. Théor. Nombres Bordeaux, 17(2) (2005), 437–454. Zbl1161.11032MR2211300
- Paul E. Gunnells and Dan Yasaki, Hecke operators and Hilbert modular forms. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 387–401. Springer, Berlin, 2008. Zbl1205.11056MR2467860
- A. Hurwitz, Ueber die Reduction der binären quadratischen Formen. Math. Ann., 45(1) (1894), 85–117. Zbl25.0313.01MR1510855
- Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann., 141 (1960), 384–432. Zbl0095.25301MR124527
- Alar Leibak, The complete enumeration of binary perfect forms over the algebraic number field . Proc. Estonian Acad. Sci. Phys. Math., 54(4) (2005), 212–234. Zbl1095.11023MR2190028
- Trygve Nagel, Zur arithmetik der polynome. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1 (1922), 178–193. 10.1007/BF02940590. MR3069398
- Heidrun E. Ong, Perfect quadratic forms over real-quadratic number fields. Geom. Dedicata, 20(1) (1986), 51–77. Zbl0582.10020MR823160
- Kenji Okuda and Syouji Yano, A generalization of Voronoï’s theorem to algebraic lattices. J. Théor. Nombres Bordeaux, 22(3) (2010), 727–740. Zbl1253.11072MR2769341
- Kenneth H. Rosen, Elementary number theory and its applications. Pearson, Reading, MA, sixth edition, 2010. Zbl0964.11002
- Achill Schürmann, Enumerating perfect forms. In Quadratic forms—algebra, arithmetic, and geometry, volume 493 of Contemp. Math., pages 359–377. Amer. Math. Soc., Providence, RI, 2009. Zbl1209.11063MR2537111
- François Sigrist, Cyclotomic quadratic forms. J. Théor. Nombres Bordeaux, 12(2) (2000), 519–530. Colloque International de Théorie des Nombres (Talence, 1999). Zbl0977.11029MR1823201
- G. Voronoǐ, Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math., 133 (1908), 97–178. Zbl38.0261.01
- Takao Watanabe, Syouji Yano, and Takuma Hayashi, Voronoï’s reduction theory of over a totally real field. Preprint at http://www.math.sci.osaka-u.ac.jp/~twatanabe/voronoireduction.pdf. Zbl1298.11067MR3074816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.