Countably thick modules

Ali Abdel-Mohsen; Mohammad Saleh

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 4, page 349-358
  • ISSN: 0044-8753

Abstract

top
The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes of modules in σ [ M ] we study when direct sums of modules from satisfies a property in σ [ M ] . In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.

How to cite

top

Abdel-Mohsen, Ali, and Saleh, Mohammad. "Countably thick modules." Archivum Mathematicum 041.4 (2005): 349-358. <http://eudml.org/doc/249477>.

@article{Abdel2005,
abstract = {The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes $\{\mathcal \{M\}\}$ of modules in $ \sigma [M]$ we study when direct sums of modules from $\{\mathcal \{M\}\}$ satisfies a property $\mathbb \{P\}$ in $\sigma [M]$. In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.},
author = {Abdel-Mohsen, Ali, Saleh, Mohammad},
journal = {Archivum Mathematicum},
keywords = {tight; weakly tight; weakly injective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; countably thick modules; locally q.f.d. modules; weakly semisimple modules},
language = {eng},
number = {4},
pages = {349-358},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Countably thick modules},
url = {http://eudml.org/doc/249477},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Abdel-Mohsen, Ali
AU - Saleh, Mohammad
TI - Countably thick modules
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 4
SP - 349
EP - 358
AB - The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes ${\mathcal {M}}$ of modules in $ \sigma [M]$ we study when direct sums of modules from ${\mathcal {M}}$ satisfies a property $\mathbb {P}$ in $\sigma [M]$. In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.
LA - eng
KW - tight; weakly tight; weakly injective; countably thick; locally q.f.d.; weakly semisimple; weakly tight modules; weakly injective modules; countably thick modules; locally q.f.d. modules; weakly semisimple modules
UR - http://eudml.org/doc/249477
ER -

References

top
  1. Albu T., Nastasescu C., Relative finiteness in module theory, Marcel Dekker 1984. (1984) Zbl0556.16001MR0749933
  2. Al-Huzali A., Jain S. K., López-Permouth S. R., Rings whose cyclics have finite Goldie dimension, J. Algebra 153 (1992), 37–40. (1992) MR1195405
  3. Berry D., Modules whose cyclic submodules have finite dimension, Canad. Math. Bull. 19 (1976), 1–6. (1976) Zbl0335.16025MR0417244
  4. Brodskii G., Saleh M., Thuyet L., Wisbauer R., On weak injectivity of direct sums of modules, Vietnam J. Math. 26 (1998), 121–127. (1998) MR1684323
  5. Brodskii G., Denumerable distributivity, linear compactness and the AB5 * condition in modules, Russian Acad. Sci. Dokl. Math. 53 (1996), 76–77. (1996) 
  6. Brodskii G., The Grothendieck condition AB5 * and generalizations of module distributivity, Russ. Math. 41 (1997), 1–11. (1997) MR1480764
  7. Camillo V. P., Modules whose quotients have finite Goldie dimension, Pacific J. Math. 69 (1977), 337–338. (1977) Zbl0356.13003MR0442020
  8. Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending modules, Pitman, London, 1994. (1994) Zbl0841.16001
  9. Dhompong S., Sanwong J., Plubtieng S., Tansee H., On modules whose singular subgenerated modules are weakly injective, Algebra Colloq. 8 (2001), 227–236. MR1838519
  10. Goel V. K., Jain S. K., π -injective modules and rings whose cyclic modules are π -injective, Comm. Algebra 6 (1978), 59–73. (1978) MR0491819
  11. Golan J. S., López-Permouth S. R., QI-filters and tight modules, Comm. Algebra 19 (1991), 2217–2229. (1991) MR1123120
  12. Jain S. K., López-Permouth S. R., Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257–269. (1990) MR1031920
  13. Jain S. K. López-Permouth S. R., Risvi T., A characterization of uniserial rings via continuous and discrete modules, J. Austral. Math. Soc., Ser. A 50 (1991), 197–203. (1991) MR1094917
  14. Jain S. K., López-Permouth S. R., Saleh M., On weakly projective modules, In: Ring Theory, Proceedings, OSU-Denison conference 1992, World Scientific Press, New Jersey, 1993, 200–208. (1992) MR1344231
  15. Jain S. K., López-Permouth S. R., Oshiro K., Saleh M., Weakly projective and weakly injective modules, Canad. J. Math. 34 (1994), 972–981. (1994) MR1295126
  16. Jain S. K., López-Permouth S. R., Singh S., On a class of QI-rings, Glasgow J. Math. 34 (1992), 75–81. (1992) MR1145633
  17. Jain S. K., López-Permouth S. R., A survey on the theory of weakly injective modules, In: Computational Algebra, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1994, 205–233. (1994) MR1245954
  18. Kurshan A. P., Rings whose cyclic modules have finitely generated socle, J. Algebra 14 (1970), 376–386. (1970) Zbl0199.35503MR0260780
  19. López-Permouth S. R., Rings characterized by their weakly injective modules, Glasgow Math. J. 34 (1992), 349–353. (1992) MR1181777
  20. Malik S., Vanaja N., Weak relative injective M-subgenerated modules, Advances in Ring Theory, Birkhauser, 1997, 221–239. (1997) Zbl0934.16002MR1602677
  21. Mohamed S., Muller B., Singh S., Quasi-dual continuous modules, J. Austral. Math. Soc., Ser. A 39 (1985), 287–299. (1985) MR0802719
  22. Mohamed S., Muller B., Continuous and discrete modules, Cambridge University Press 1990. (1990) MR1084376
  23. Saleh M., A note on tightness, Glasgow Math. J. (1999), 43–44. (1999) Zbl0923.16003MR1689655
  24. Saleh M., Abdel-Mohsen A., On weak injectivity and weak projectivity, In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207. Zbl0985.16002MR1773029
  25. Saleh M., Abdel-Mohsen A., A note on weak injectivity, Far East Journal of Mathematical Sciences (FJMS) 11 (2003), 199-20-6. Zbl1063.16004MR2020502
  26. Saleh M., On q.f.d. modules and q.f.d. rings, Houston J. Math. 30 (2004), 629–636. Zbl1070.16002MR2083867
  27. Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S., On quasi-principally injective modules, Algebra Colloq. 6 (1999), 296–276. (1999) Zbl0949.16003MR1809646
  28. Sanh N. V., Dhompongsa S., Wongwai S., On generalized q.f.d. modules and rings, Algebra and Combinatorics, Springer-Verlag, 1999, 367–272. (1999) MR1733193
  29. Wisbauer R., Foundations of module and ring theory, Gordon and Breach, 1991. (1991) Zbl0746.16001MR1144522
  30. Zhou Y., Notes on weakly semisimple rings, Bull. Austral. Math. Soc. 52 (1996), 517–525. (1996) MR1358705
  31. Zhou Y., Weak injectivity and module classes, Comm. Algebra (1997), 2395–2407. (1997) Zbl0934.16004MR1459568

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.