Integrability and L 1 -convergence of Rees-Stanojević sums with generalized semi-convex coefficients of non-integral orders

Kulwinder Kaur

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 4, page 423-437
  • ISSN: 0044-8753

Abstract

top
Integrability and L 1 - convergence of modified cosine sums introduced by Rees and Stanojević under a class of generalized semi-convex null coefficients are studied by using Cesàro means of non-integral orders.

How to cite

top

Kaur, Kulwinder. "Integrability and $L^1$-convergence of Rees-Stanojević sums with generalized semi-convex coefficients of non-integral orders." Archivum Mathematicum 041.4 (2005): 423-437. <http://eudml.org/doc/249505>.

@article{Kaur2005,
abstract = {Integrability and $L^\{1\}-$convergence of modified cosine sums introduced by Rees and Stanojević under a class of generalized semi-convex null coefficients are studied by using Cesàro means of non-integral orders.},
author = {Kaur, Kulwinder},
journal = {Archivum Mathematicum},
keywords = {$L^\{1\}$-convergences; Cesàro means; conjugate Cesàro mean; semi-convex null coefficients; generalized semi-convex null coefficients; Fourier cosine series; conjugate Cesàro mean; Fourier cosine series},
language = {eng},
number = {4},
pages = {423-437},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Integrability and $L^1$-convergence of Rees-Stanojević sums with generalized semi-convex coefficients of non-integral orders},
url = {http://eudml.org/doc/249505},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Kaur, Kulwinder
TI - Integrability and $L^1$-convergence of Rees-Stanojević sums with generalized semi-convex coefficients of non-integral orders
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 4
SP - 423
EP - 437
AB - Integrability and $L^{1}-$convergence of modified cosine sums introduced by Rees and Stanojević under a class of generalized semi-convex null coefficients are studied by using Cesàro means of non-integral orders.
LA - eng
KW - $L^{1}$-convergences; Cesàro means; conjugate Cesàro mean; semi-convex null coefficients; generalized semi-convex null coefficients; Fourier cosine series; conjugate Cesàro mean; Fourier cosine series
UR - http://eudml.org/doc/249505
ER -

References

top
  1. Andersen A. F., On extensions within the theory of Cesàro summability of a classical convergence theorem of Dedekind, Proc. London Math. Soc. 8 (1958), 1–52. (1958) MR0092880
  2. Bosanquet L. S., Note on the Bohr-Hardy theorem, J. London Math. Soc. 17 (1942), 166–173. (1942) Zbl0028.14901MR0007800
  3. Bosanquet L. S., Note on convergence and summability factors (III), Proc. London Math. Soc. (1949), 482–496. (1949) Zbl0032.40402MR0027872
  4. Garrett J. W., Stanojević Č. V., On integrability and L 1 -convergence of certain cosine sums, Notices, Amer. Math. Soc. 22 (1975), A–166. (1975) MR2625039
  5. Garrett J. W., Stanojević Č. V., On L 1 -convergence of certain cosine sums, Proc. Amer. Math. Soc. 54 (1976), 101–105. (1976) MR0394002
  6. Kano T., Coefficients of some trigonometric series, J. Fac. Sci. Shihshu University 3 (1968), 153–162. (1968) Zbl0321.42008MR0271615
  7. Kaur K., Bhatia S. S., Integrability and L-convergence of Rees-Stanojević sums with generalized semi-convex coefficients, Int. J. Math. Math. Sci. 30(11) (2002), 645–650. MR1916824
  8. Kolmogorov A. N., Sur l’ordere de grandeur des coefficients de la series de Fourier–Lebesque, Bull. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923) 83–86. (1923) 
  9. Young W. H., On the Fourier series of bounded functions, Proc. London Math. Soc. 12(2) (1913), 41–70. (1913) 
  10. Zygmund A., Trigonometric series, Volume 1, Vol. II, Cambridge University Press. Zbl1084.42003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.