Some new modified cosine sums and L 1 -convergence of cosine trigonometric series

Xhevat Z. Krasniqi

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 1, page 43-50
  • ISSN: 0044-8753

Abstract

top
In this paper we introduce some new modified cosine sums and then using these sums we study L 1 -convergence of trigonometric cosine series.

How to cite

top

Krasniqi, Xhevat Z.. "Some new modified cosine sums and $L^{1}$-convergence of cosine trigonometric series." Archivum Mathematicum 049.1 (2013): 43-50. <http://eudml.org/doc/252496>.

@article{Krasniqi2013,
abstract = {In this paper we introduce some new modified cosine sums and then using these sums we study $L^\{1\}$-convergence of trigonometric cosine series.},
author = {Krasniqi, Xhevat Z.},
journal = {Archivum Mathematicum},
keywords = {$L^\{1\}$-convergence of trigonometric cosine series; new modified cosine sums; Dirichlet kernel; -convergence of trigonometric cosine series; new modified cosine sums; Dirichlet kernel},
language = {eng},
number = {1},
pages = {43-50},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some new modified cosine sums and $L^\{1\}$-convergence of cosine trigonometric series},
url = {http://eudml.org/doc/252496},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Krasniqi, Xhevat Z.
TI - Some new modified cosine sums and $L^{1}$-convergence of cosine trigonometric series
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 1
SP - 43
EP - 50
AB - In this paper we introduce some new modified cosine sums and then using these sums we study $L^{1}$-convergence of trigonometric cosine series.
LA - eng
KW - $L^{1}$-convergence of trigonometric cosine series; new modified cosine sums; Dirichlet kernel; -convergence of trigonometric cosine series; new modified cosine sums; Dirichlet kernel
UR - http://eudml.org/doc/252496
ER -

References

top
  1. Bary, N. K., A treatise on trigonometric series, Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1964. (1964) Zbl0129.28002
  2. Fomin, G. A., On linear methods for summing Fourier series, Math. Sbornik 66 (1964), 144–152. (1964) MR0168988
  3. Garret, W. J., Stanojević, Č. V., On integrability and L 1 –convergence of certain cosine sums, Notices, Amer. Math. Soc. 22 (1975), A–166. (1975) 
  4. Garret, W. J., Stanojević, Č. V., On L 1 –convergence of certain cosine sums, Proc. Amer. Math. Soc. 54 (1976), 101–105. (1976) MR0394002
  5. Hooda, N., Ram, B., Bhatia, S. S., On L 1 –convergence of a modified cosine sum, Soochow J. of Math. 28 (3) (2002), 305–310. (2002) Zbl1019.42002MR1926327
  6. Kaur, J., Bhatia, S. S., Integrability and L 1 –convergence of certain cosine sums, Kyungpook Math. J. 47 (2007), 323–328. (2007) Zbl1143.42300MR2413939
  7. Kaur, J., Bhatia, S. S., 10.1134/S1995080210030121, Lobachevskii J. Math. 31 (3) (2010), 290–294. (2010) Zbl1256.42007MR2720651DOI10.1134/S1995080210030121
  8. Kaur, J., Bhatia, S. S., A class of L 1 –convergence of new modified cosine sums, Southeast Asian Bull. Math. 36 (2012), 831–836. (2012) MR3057813
  9. Kaur, K., On L 1 –convergence of a modified sine sums, Electronic J. Geogr. Math. 14 (1) (2003). (2003) 
  10. Kaur, K., Integrability and L s p 1 –convergence of Rees–Stanojevic sums with generalized semi–convex coefficients of non–integral orders, Arch. Math. (Brno) 41 (4) (2005), 423–437. (2005) MR2195495
  11. Kaur, K., Bhatia, S. S., 10.1155/S0161171202012942, Int. J. Math. Math. Sci. 30 (11) (2002), 645–650. (2002) Zbl1010.42017MR1916824DOI10.1155/S0161171202012942
  12. Kaur, K., Bhatia, S. S., Ram, B., Integrability and L 1 –convergence of modified sine sums, Georgian Math. J. 11 (1) (2004), 99–104. (2004) Zbl1051.42004MR2065543
  13. Krasniqi, Xh. Z., A note on L 1 –convergence of the sine and cosine trigonometric series with semi–convex coefficients, Int. J. Open Probl. Comput. Sci. Math. 2 (2) (2009), 231–239. (2009) Zbl1208.42002MR2524696
  14. Krasniqi, Xh. Z., 10.4418/2010.65.2.3, , Matematiche 65 (2) (2010), 25–32. (2010) Zbl1239.42004MR2802066DOI10.4418/2010.65.2.3
  15. Kumari, S., Ram, B., L 1 –convergence of certain trigonometric sums, Indian J. Pure Appl. Math. 20 (9) (1989), 908–914. (1989) MR1015638
  16. Leindler, L., Additions to the Telyakovskiĭ class S , J. Inequal. Pure Appl. Math. 4 (2) (2003), 5, electronic only. (2003) MR1994248
  17. Ram, B., Convergence of certain cosine sums in the metric space L , Proc. Amer. Math. Soc. 66 (1977), 258–260. (1977) Zbl0367.42011MR0461013
  18. Sidon, S., Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 1528–160. (1939) Zbl0021.40301
  19. Singh, K., Kaur, K., On L 1 –convergence of certain generalized modified trigonometric sums, Mat. Vesnik 61 (3) (2009), 219–226. (2009) Zbl1265.42012MR2546612
  20. Singh, N., Sharma, K. M., Convergence of certain cosine sums in the metric space L , Proc. Amer. Math. Soc. 75 (1978), 117–120. (1978) MR0503543
  21. Telyakovskiĭ, S. A., On a sufficient condition of Sidon for integrability of trigonometric series, Math. Zametki 14 (1973), 317–328. (1973) MR0328456
  22. Tomovski, Ž., Some results on L 1 –approximation of the r –th derivative of Fourier series, J. Inequal. Pure Appl. Math. 1 (2002), 11, electronic only. (2002) Zbl0999.42004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.