Duality theory of spaces of vector-valued continuous functions
Marian Nowak; Aleksandra Rzepka
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 1, page 55-73
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNowak, Marian, and Rzepka, Aleksandra. "Duality theory of spaces of vector-valued continuous functions." Commentationes Mathematicae Universitatis Carolinae 46.1 (2005): 55-73. <http://eudml.org/doc/249538>.
@article{Nowak2005,
abstract = {Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta _z(X,E)$ for $z=\sigma , \tau , t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E^\{\prime \})$ for $z=\sigma , \tau , t$. It is shown that if a subset $H$ of $M_z(X,E^\{\prime \})$ is relatively $\sigma (M_z(X,E^\{\prime \}), C_b(X,E))$-compact, then the set $\operatorname\{conv\} (S(H))$ is still relatively $\sigma (M_z(X,E^\{\prime \}), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E^\{\prime \})$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained.},
author = {Nowak, Marian, Rzepka, Aleksandra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector-valued continuous functions; strict topologies; locally solid topologies; weak-star compactness; vector measures; strict topologies; locally solid topologies; weak-star compactness; vector measures},
language = {eng},
number = {1},
pages = {55-73},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Duality theory of spaces of vector-valued continuous functions},
url = {http://eudml.org/doc/249538},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Nowak, Marian
AU - Rzepka, Aleksandra
TI - Duality theory of spaces of vector-valued continuous functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 1
SP - 55
EP - 73
AB - Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta _z(X,E)$ for $z=\sigma , \tau , t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E^{\prime })$ for $z=\sigma , \tau , t$. It is shown that if a subset $H$ of $M_z(X,E^{\prime })$ is relatively $\sigma (M_z(X,E^{\prime }), C_b(X,E))$-compact, then the set $\operatorname{conv} (S(H))$ is still relatively $\sigma (M_z(X,E^{\prime }), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E^{\prime })$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained.
LA - eng
KW - vector-valued continuous functions; strict topologies; locally solid topologies; weak-star compactness; vector measures; strict topologies; locally solid topologies; weak-star compactness; vector measures
UR - http://eudml.org/doc/249538
ER -
References
top- Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York, San Francisco, London, 1978. Zbl1043.46003MR0493242
- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985. Zbl1098.47001MR0809372
- Fontenot R.A., Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853. (1974) Zbl0259.46037MR0348463
- Fontenot R.A., Strict topologies for vector-valued functions, Corrigendum, Canad. J. Math. 27 5 (1975), 1183-1184. (1975) MR0388057
- Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960. Zbl0327.46040MR0116199
- Khurana S.S., Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211. (1978) Zbl0362.46035MR0492297
- Khurana S.S., Chao S.A., Strict topologies and -spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284. (1976) MR0425603
- Khurana S.S., Othman S.I., Convex compactness property in certain spaces of measures, Math. Ann. 279 (1987), 345-348. (1987) Zbl0613.46041MR0919510
- Khurana S.S., Othman S.I., Grothendieck measures, J. London Math. Soc. (2) 39 (1989), 481-486. (1989) Zbl0681.46030MR1002460
- Khurana S.S., Othman S.I., Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 2 (1995), 163-170. (1995) Zbl0832.46016MR1357072
- Khurana S.S., Vielma J., Strict topologies and perfect measures, Czechoslovak Math. J. 40 1 (1990), 1-7. (1990) MR1032358
- Khurana S.S., Vielma J., Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions, J. Math. Anal. Appl. 195 (1995), 251-260. (1995) Zbl0854.46032MR1352821
- Nowak M., Rzepka A., Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 3 (2002), 473-483. (2002) Zbl1068.46023MR1920522
- Sentilles F.D., Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. (1972) Zbl0244.46027MR0295065
- Varadarajan V.S., Measures on topological spaces, Amer. Math. Soc. Translations (2) 48 (1965), 161-220. (1965)
- Wheeler R.F., Survey of Baire measures and strict topologies, Exposition Math. 2 (1983), 97-190. (1983) Zbl0522.28009MR0710569
- Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. Zbl0395.46001MR0518316
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.