Stability of positive part of unit ball in Orlicz spaces
Ryszard Grzaślewicz; Witold Seredyński
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 3, page 413-424
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGrzaślewicz, Ryszard, and Seredyński, Witold. "Stability of positive part of unit ball in Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 413-424. <http://eudml.org/doc/249548>.
@article{Grzaślewicz2005,
abstract = {The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi \colon Q\times Q\rightarrow Q$, $\Phi (x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi (\mu )$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.},
author = {Grzaślewicz, Ryszard, Seredyński, Witold},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {stable convex set},
language = {eng},
number = {3},
pages = {413-424},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Stability of positive part of unit ball in Orlicz spaces},
url = {http://eudml.org/doc/249548},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Grzaślewicz, Ryszard
AU - Seredyński, Witold
TI - Stability of positive part of unit ball in Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 413
EP - 424
AB - The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi \colon Q\times Q\rightarrow Q$, $\Phi (x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi (\mu )$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.
LA - eng
KW - stable convex set
UR - http://eudml.org/doc/249548
ER -
References
top- Chen Shutao, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996), 204 pp. (1996) Zbl1089.46500MR1410390
- Clausing A., Papadopoulou S., Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193-203. (1978) Zbl0349.46002MR0467249
- Granero A.S., A full characterization of stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 116 (1992), 675-681. (1992) Zbl0772.46012MR1127140
- Granero A.S., Stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 109 (1990), 97-104. (1990) Zbl0722.46014MR1000154
- Granero A.S., Wisła M., Closedness of the set of extreme points in Orlicz spaces, Math. Nachr. 157 (1992), 319-394. (1992) MR1233067
- Grząślewicz R., Extreme continuous function property, Acta Math. Hungar. 74 (1997), 93-99. (1997) MR1428050
- Grząślewicz R., Finite dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 5-6 277-283. (1985) MR0816376
- Krasnosel'skii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Grooningen, 1961. MR0126722
- Lazar A.J., Affine functions on simplexes and extreme operators, Israel J. Math. 5 (1967), 31-43. (1967) Zbl0149.08703MR0211246
- Lima Å., On continuous convex functions and split faces, Proc. London Math. Soc. 25 (1972), 27-40. (1972) Zbl0236.46024MR0303243
- Luxemburg W.A.J., Banach function spaces, Thesis, Delft, 1955. Zbl0162.44701MR0072440
- Michael E., Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107
- Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983. Zbl0557.46020MR0724434
- O'Brien R.C., On the openness of the barycentre map, Math. Ann. 223 (1976), 207-212. (1976) Zbl0321.46004MR0420221
- Orlicz W., Über eine gewisse Klasse von Räumen vom Types B, Bull. Intern. Acad. Pol., série A, Kraków, 1932, pp.207-220.
- Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) Zbl0339.46001MR0450938
- Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. Zbl0724.46032MR1113700
- Schaefer H.H., Banach Lattices and Positive Operators, Springer, Berlin-Heidelberg-New York, 1974. Zbl0296.47023MR0423039
- Vesterstrøm J., On open maps, compact convex sets and operator algebras, J. London Math. Soc. 6 (1973), 289-297. (1973) MR0315464
- Wisła M., Continuity of the identity embedding of Musielak-Orlicz sequence spaces, Proc. of the 14th Winter School on Abstract Analysis, Srní, 1986, Rend. Circ. Mat. Palermo Suppl. 14 (1987), 427-437. MR0920876
- Wisła M., Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. Univ.(Basel) 56 (1991), 482-490. (1991) MR1100574
- Wisła M., Stable points of unit ball in Orlicz spaces, Comment. Math. Univ. Carolinae 32 (1991), 501-515. (1991) MR1159798
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.