Stability of positive part of unit ball in Orlicz spaces

Ryszard Grzaślewicz; Witold Seredyński

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 3, page 413-424
  • ISSN: 0010-2628

Abstract

top
The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set Q in a topological vector space is stable if the midpoint map Φ : Q × Q Q , Φ ( x , y ) = ( x + y ) / 2 is open with respect to the inherited topology in Q . The main theorem is established: In the Orlicz space L ϕ ( μ ) the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.

How to cite

top

Grzaślewicz, Ryszard, and Seredyński, Witold. "Stability of positive part of unit ball in Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 413-424. <http://eudml.org/doc/249548>.

@article{Grzaślewicz2005,
abstract = {The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi \colon Q\times Q\rightarrow Q$, $\Phi (x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi (\mu )$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.},
author = {Grzaślewicz, Ryszard, Seredyński, Witold},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {stable convex set},
language = {eng},
number = {3},
pages = {413-424},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Stability of positive part of unit ball in Orlicz spaces},
url = {http://eudml.org/doc/249548},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Grzaślewicz, Ryszard
AU - Seredyński, Witold
TI - Stability of positive part of unit ball in Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 413
EP - 424
AB - The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set $Q$ in a topological vector space is stable if the midpoint map $\Phi \colon Q\times Q\rightarrow Q$, $\Phi (x,y) =(x+y)/2$ is open with respect to the inherited topology in $Q$. The main theorem is established: In the Orlicz space $L^\varphi (\mu )$ the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.
LA - eng
KW - stable convex set
UR - http://eudml.org/doc/249548
ER -

References

top
  1. Chen Shutao, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996), 204 pp. (1996) Zbl1089.46500MR1410390
  2. Clausing A., Papadopoulou S., Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193-203. (1978) Zbl0349.46002MR0467249
  3. Granero A.S., A full characterization of stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 116 (1992), 675-681. (1992) Zbl0772.46012MR1127140
  4. Granero A.S., Stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 109 (1990), 97-104. (1990) Zbl0722.46014MR1000154
  5. Granero A.S., Wisła M., Closedness of the set of extreme points in Orlicz spaces, Math. Nachr. 157 (1992), 319-394. (1992) MR1233067
  6. Grząślewicz R., Extreme continuous function property, Acta Math. Hungar. 74 (1997), 93-99. (1997) MR1428050
  7. Grząślewicz R., Finite dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 5-6 277-283. (1985) MR0816376
  8. Krasnosel'skii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Grooningen, 1961. MR0126722
  9. Lazar A.J., Affine functions on simplexes and extreme operators, Israel J. Math. 5 (1967), 31-43. (1967) Zbl0149.08703MR0211246
  10. Lima Å., On continuous convex functions and split faces, Proc. London Math. Soc. 25 (1972), 27-40. (1972) Zbl0236.46024MR0303243
  11. Luxemburg W.A.J., Banach function spaces, Thesis, Delft, 1955. Zbl0162.44701MR0072440
  12. Michael E., Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107
  13. Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983. Zbl0557.46020MR0724434
  14. O'Brien R.C., On the openness of the barycentre map, Math. Ann. 223 (1976), 207-212. (1976) Zbl0321.46004MR0420221
  15. Orlicz W., Über eine gewisse Klasse von Räumen vom Types B, Bull. Intern. Acad. Pol., série A, Kraków, 1932, pp.207-220. 
  16. Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) Zbl0339.46001MR0450938
  17. Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. Zbl0724.46032MR1113700
  18. Schaefer H.H., Banach Lattices and Positive Operators, Springer, Berlin-Heidelberg-New York, 1974. Zbl0296.47023MR0423039
  19. Vesterstrøm J., On open maps, compact convex sets and operator algebras, J. London Math. Soc. 6 (1973), 289-297. (1973) MR0315464
  20. Wisła M., Continuity of the identity embedding of Musielak-Orlicz sequence spaces, Proc. of the 14th Winter School on Abstract Analysis, Srní, 1986, Rend. Circ. Mat. Palermo Suppl. 14 (1987), 427-437. MR0920876
  21. Wisła M., Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. Univ.(Basel) 56 (1991), 482-490. (1991) MR1100574
  22. Wisła M., Stable points of unit ball in Orlicz spaces, Comment. Math. Univ. Carolinae 32 (1991), 501-515. (1991) MR1159798

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.