Page 1 Next

Displaying 1 – 20 of 398

Showing per page

A classification of projectors

Gustavo Corach, Alejandra Maestripieri, Demetrio Stojanoff (2005)

Banach Center Publications

A positive operator A and a closed subspace of a Hilbert space ℋ are called compatible if there exists a projector Q onto such that AQ = Q*A. Compatibility is shown to depend on the existence of certain decompositions of ℋ and the ranges of A and A 1 / 2 . It also depends on a certain angle between A() and the orthogonal of .

A new type of orthogonality for normed planes

Horst Martini, Margarita Spirova (2010)

Czechoslovak Mathematical Journal

In this paper we introduce a new type of orthogonality for real normed planes which coincides with usual orthogonality in the Euclidean situation. With the help of this type of orthogonality we derive several characterizations of the Euclidean plane among all normed planes, all of them yielding also characteristic properties of inner product spaces among real normed linear spaces of dimensions d 3 .

A product of three projections

Eva Kopecká, Vladimír Müller (2014)

Studia Mathematica

Let X and Y be two closed subspaces of a Hilbert space. If we send a point back and forth between them by orthogonal projections, the iterates converge to the projection of the point onto the intersection of X and Y by a theorem of von Neumann. Any sequence of orthoprojections of a point in a Hilbert space onto a finite family of closed subspaces converges weakly, according to Amemiya and Ando. The problem of norm convergence was open for a long time. Recently Adam Paszkiewicz...

A Riccati equation arising in a boundary control problem for distributed parameters

Franco Flandoli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si prova resistenza locale della soluzione di una equazione di Riccati che si incontra in un problema di controllo ottimale. In ipotesi di regolarità per il costo si prova resistenza globale. Il problema astratto considerato è il modello di alcuni problemi di controllo ottimale governati da equazioni paraboliche con controllo sulla frontiera.

Currently displaying 1 – 20 of 398

Page 1 Next