Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
Mathematica Bohemica (2005)
- Volume: 130, Issue: 4, page 349-354
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion." Mathematica Bohemica 130.4 (2005): 349-354. <http://eudml.org/doc/249574>.
@article{Lee2005,
abstract = {It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow \{\mathbb \{R\}\}$ and a continuous function $F \: [0,1]^2 \longrightarrow \{\mathbb \{R\}\}$ such that \[ (¶) \int \_0^x \bigg \lbrace (¶) \int \_0^yf(u,v) \mathrm \{d\}v \bigg \rbrace \mathrm \{d\}u = (¶) \int \_0^y \bigg \lbrace (¶) \int \_0^xf(u,v) \mathrm \{d\}u \bigg \rbrace \mathrm \{d\}v = F(x,y) \]
for all $(x,y) \in [0,1]^2$.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {Henstock-Kurzweil integral; McShane integral; Henstock-Kurzweil integral; McShane integral},
language = {eng},
number = {4},
pages = {349-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion},
url = {http://eudml.org/doc/249574},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 4
SP - 349
EP - 354
AB - It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow {\mathbb {R}}$ and a continuous function $F \: [0,1]^2 \longrightarrow {\mathbb {R}}$ such that \[ (¶) \int _0^x \bigg \lbrace (¶) \int _0^yf(u,v) \mathrm {d}v \bigg \rbrace \mathrm {d}u = (¶) \int _0^y \bigg \lbrace (¶) \int _0^xf(u,v) \mathrm {d}u \bigg \rbrace \mathrm {d}v = F(x,y) \]
for all $(x,y) \in [0,1]^2$.
LA - eng
KW - Henstock-Kurzweil integral; McShane integral; Henstock-Kurzweil integral; McShane integral
UR - http://eudml.org/doc/249574
ER -
References
top- 10.1090/S0002-9939-1991-1034883-6, Proc. Amer. Math. Soc. 111 (1991), 127–129. (1991) Zbl0732.26011MR1034883DOI10.1090/S0002-9939-1991-1034883-6
- 10.1215/ijm/1255986726, Illinois J. Math. 38 (1994), 471–479. (1994) Zbl0797.28006MR1269699DOI10.1215/ijm/1255986726
- 10.1215/ijm/1255986891, Illinois J. Math. 38 (1994), 127–147. (1994) MR1245838DOI10.1215/ijm/1255986891
- 10.1215/ijm/1255988170, Illinois J. Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
- The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. (1994) Zbl0807.26004MR1288751
- Zur Theorie des mehrdimensionalen Integrals, Časopis Pěst. Mat. 80 (1955), 400–414. (Czech) (1955) MR0089249
- Equi-integrability and controlled convergence of Perron-type integrable functions, Real Anal. Exchange 17 (1991/92), 110–139. (1991/92) MR1147361
- The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR1756319
- A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677–700. (2003) Zbl1047.26006MR2005879
- Some full characterizations of the strong McShane integral, Math. Bohem. 129 (2004), 305–312. (2004) Zbl1080.26006MR2092716
- 10.1215/ijm/1258138470, Illinois J. Math. 46 (2002), 1125–1144. (2002) MR1988254DOI10.1215/ijm/1258138470
- On the curvilinear and iterated integral, Trudy Mat. Inst. Steklov. 35 (1950), 102 pp. (Russian) (1950) MR0044612
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.