Some full characterizations of the strong McShane integral
Mathematica Bohemica (2004)
- Volume: 129, Issue: 3, page 305-312
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Some full characterizations of the strong McShane integral." Mathematica Bohemica 129.3 (2004): 305-312. <http://eudml.org/doc/249411>.
@article{Lee2004,
abstract = {Some full characterizations of the strong McShane integral are obtained.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {strong McShane integral; strong absolute continuity; McShane variational measure; strong McShane integral; strong absolute continuity; McShane variational measure},
language = {eng},
number = {3},
pages = {305-312},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some full characterizations of the strong McShane integral},
url = {http://eudml.org/doc/249411},
volume = {129},
year = {2004},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Some full characterizations of the strong McShane integral
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 3
SP - 305
EP - 312
AB - Some full characterizations of the strong McShane integral are obtained.
LA - eng
KW - strong McShane integral; strong absolute continuity; McShane variational measure; strong McShane integral; strong absolute continuity; McShane variational measure
UR - http://eudml.org/doc/249411
ER -
References
top- Real Analysis, Prentice-Hall, 1997. (1997)
- 10.1090/S0002-9947-1936-1501880-4, Trans. Amer. Math. Soc. 40 (1936), 396–414. (1936) Zbl0015.35604MR1501880DOI10.1090/S0002-9947-1936-1501880-4
- 10.1023/A:1013705821657, Czechoslovak Math. J. 51 (2001), 95–110. (2001) MR1814635DOI10.1023/A:1013705821657
- 10.1215/ijm/1255986891, Illinois J. Math. 38 (1994), 127–141. (1994) MR1245838DOI10.1215/ijm/1255986891
- The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc., Providence, 1994. (1994) Zbl0807.26004MR1288751
- Perron-type integration on -dimensional intervals and its properties, Czechoslovak Math. J. 45 (1995), 79–106. (1995) MR1314532
- The Integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Ser. 14, Cambridge University Press, 2000. (2000) MR1756319
- Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof, (to appear). (to appear) Zbl1064.28011MR2095582
- 10.1090/S0002-9939-1988-0955000-4, Proc. Amer. Math. Soc. 103 (1988), 1161–1166. (1988) Zbl0656.26010MR0955000DOI10.1090/S0002-9939-1988-0955000-4
- The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. (1993) Zbl0804.26005MR1268404
- 10.1023/A:1013721114330, Czechoslovak Math. J. 51 (2001), 819–828. (2001) MR1864044DOI10.1023/A:1013721114330
- Introduction to the Gauge Integrals, World Scientific, 2001. (2001) MR1845270
- Derivates of Interval Functions, Mem. Amer. Math. Soc. 452, 1991. (1991) Zbl0734.26003MR1078198
Citations in EuDML Documents
top- Guoju Ye, Some characterizations of the primitive of strong Henstock-Kurzweil integrable functions
- Tuo-Yeong Lee, Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
- Sokol Bush Kaliaj, Some remarks on descriptive characterizations of the strong McShane integral
- Lee Tuo-Yeong, Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.