A scalar Volterra derivative for the PoU-integral

V. Marraffa

Mathematica Bohemica (2005)

  • Volume: 130, Issue: 1, page 49-62
  • ISSN: 0862-7959

Abstract

top
A weak form of the Henstock Lemma for the P o U -integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the P o U -integral. Also the P o U -integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions.

How to cite

top

Marraffa, V.. "A scalar Volterra derivative for the PoU-integral." Mathematica Bohemica 130.1 (2005): 49-62. <http://eudml.org/doc/249596>.

@article{Marraffa2005,
abstract = {A weak form of the Henstock Lemma for the $\{\mathrm \{P\}oU\}$-integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the $\{\mathrm \{P\}oU\}$-integral. Also the $\{\mathrm \{P\}oU\}$-integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions.},
author = {Marraffa, V.},
journal = {Mathematica Bohemica},
keywords = {Pettis integral; McShane integral; $\{\mathrm \{P\}oU\}$ integral; Volterra derivative; Pettis integral; McShane integral},
language = {eng},
number = {1},
pages = {49-62},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A scalar Volterra derivative for the PoU-integral},
url = {http://eudml.org/doc/249596},
volume = {130},
year = {2005},
}

TY - JOUR
AU - Marraffa, V.
TI - A scalar Volterra derivative for the PoU-integral
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 1
SP - 49
EP - 62
AB - A weak form of the Henstock Lemma for the ${\mathrm {P}oU}$-integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the ${\mathrm {P}oU}$-integral. Also the ${\mathrm {P}oU}$-integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions.
LA - eng
KW - Pettis integral; McShane integral; ${\mathrm {P}oU}$ integral; Volterra derivative; Pettis integral; McShane integral
UR - http://eudml.org/doc/249596
ER -

References

top
  1. Vector Measures, Mathematical Surveys, N.15, Amer. Math. Soc., 1977. (1977) MR0453964
  2. Vector Integration and Stochastic Integration in Banach Space, John Wiley & Sons, 1999. (1999) MR1782432
  3. 10.1023/A:1021736031567, Czechoslovak Math. J. 52 (2002), 609–633. (2002) MR1923266DOI10.1023/A:1021736031567
  4. 10.4064/sm151-2-5, Studia Math. 151 (2002), 175–185. (2002) MR1917952DOI10.4064/sm151-2-5
  5. 10.1090/S0002-9947-1940-0002020-4, Trans. Amer. Math. Soc. 47 (1940), 323–392. (1940) MR0002020DOI10.1090/S0002-9947-1940-0002020-4
  6. 10.1215/ijm/1255986628, Illinois J. Math. 39 (1995), 39–67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
  7. 10.1215/ijm/1255988170, Illinois J. Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
  8. A non absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (1985), 116–139. (1985) MR0779340
  9. A new and more powerful concept of the P U -integral, Czechoslovak Math. J. 38 (1988), 8–48. (1988) MR0925939
  10. 10.1215/S0012-7094-39-00523-5, Duke Math. J. 5 (1939), 254–269. (1939) MR1546122DOI10.1215/S0012-7094-39-00523-5
  11. 10.1090/S0002-9939-1993-1135079-1, Proc. Amer. Math. Soc. 117 (1993), 411–416. (1993) Zbl0789.28005MR1135079DOI10.1090/S0002-9939-1993-1135079-1
  12. 10.1090/S0002-9947-1940-0002707-3, Trans. Amer. Math. Soc. 47 (1940), 114–145. (1940) Zbl0022.31902MR0002707DOI10.1090/S0002-9947-1940-0002707-3
  13. Differentiation, Handbook of Measure Theory, vol. I, E. Pap (ed.), Elsevier, North-Holland, 2002. (2002) Zbl1028.28001MR1954615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.