A scalar Volterra derivative for the PoU-integral
Mathematica Bohemica (2005)
- Volume: 130, Issue: 1, page 49-62
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topReferences
top- Vector Measures, Mathematical Surveys, N.15, Amer. Math. Soc., 1977. (1977) MR0453964
- Vector Integration and Stochastic Integration in Banach Space, John Wiley & Sons, 1999. (1999) MR1782432
- 10.1023/A:1021736031567, Czechoslovak Math. J. 52 (2002), 609–633. (2002) MR1923266DOI10.1023/A:1021736031567
- 10.4064/sm151-2-5, Studia Math. 151 (2002), 175–185. (2002) MR1917952DOI10.4064/sm151-2-5
- 10.1090/S0002-9947-1940-0002020-4, Trans. Amer. Math. Soc. 47 (1940), 323–392. (1940) MR0002020DOI10.1090/S0002-9947-1940-0002020-4
- 10.1215/ijm/1255986628, Illinois J. Math. 39 (1995), 39–67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
- 10.1215/ijm/1255988170, Illinois J. Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
- A non absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (1985), 116–139. (1985) MR0779340
- A new and more powerful concept of the -integral, Czechoslovak Math. J. 38 (1988), 8–48. (1988) MR0925939
- 10.1215/S0012-7094-39-00523-5, Duke Math. J. 5 (1939), 254–269. (1939) MR1546122DOI10.1215/S0012-7094-39-00523-5
- 10.1090/S0002-9939-1993-1135079-1, Proc. Amer. Math. Soc. 117 (1993), 411–416. (1993) Zbl0789.28005MR1135079DOI10.1090/S0002-9939-1993-1135079-1
- 10.1090/S0002-9947-1940-0002707-3, Trans. Amer. Math. Soc. 47 (1940), 114–145. (1940) Zbl0022.31902MR0002707DOI10.1090/S0002-9947-1940-0002707-3
- Differentiation, Handbook of Measure Theory, vol. I, E. Pap (ed.), Elsevier, North-Holland, 2002. (2002) Zbl1028.28001MR1954615