A non absolutely convergent integral which admits transformation and can be used for integration on manifolds

Jiří Jarník; Jaroslav Kurzweil

Czechoslovak Mathematical Journal (1985)

  • Volume: 35, Issue: 1, page 116-139
  • ISSN: 0011-4642

How to cite

top

Jarník, Jiří, and Kurzweil, Jaroslav. "A non absolutely convergent integral which admits transformation and can be used for integration on manifolds." Czechoslovak Mathematical Journal 35.1 (1985): 116-139. <http://eudml.org/doc/13497>.

@article{Jarník1985,
author = {Jarník, Jiří, Kurzweil, Jaroslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {integration on manifolds; non-absolute integrals; Riemann-type integral; Stokes theorem for differentiable vector fields},
language = {eng},
number = {1},
pages = {116-139},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A non absolutely convergent integral which admits transformation and can be used for integration on manifolds},
url = {http://eudml.org/doc/13497},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Jarník, Jiří
AU - Kurzweil, Jaroslav
TI - A non absolutely convergent integral which admits transformation and can be used for integration on manifolds
JO - Czechoslovak Mathematical Journal
PY - 1985
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 1
SP - 116
EP - 139
LA - eng
KW - integration on manifolds; non-absolute integrals; Riemann-type integral; Stokes theorem for differentiable vector fields
UR - http://eudml.org/doc/13497
ER -

References

top
  1. J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, Czechoslovak Math. J. 31 (106) (1981), No. 4, 614-632. (1981) Zbl0562.26004MR0631606
  2. J. Jarník J. Kurzweil Š. Schwabik, On Mawhin's approach to multiple nonabsolutely convergent integral, Časopis pro pěst. mat. 108 (1983), No. 4, 356-380. (1983) MR0727536
  3. J. Kurzweil, Nichtabsolut konvergente Integrale, Teubner-Texte für Mathematik 26, Teubner, Leipzig 1980. (1980) Zbl0441.28001MR0597703
  4. J. Jarník J. Kurzweil, A nonabsolutely convergent integral in R 2 which admits C 1 -transfor- mations, Časopis pro pěst. mat. 109 (1984), N0. 2, 157-167. (1984) MR0744873
  5. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, N.J. 1964. (Russian translation: Mir, Moskva 1970) (1964) Zbl0129.13102MR0193578
  6. M. Spivak, Calculus on Manifolds, W. A. Benjamin Inc., New York-Amsterdam 1965. (Russian translation: Mir, Moskva 1968) (1965) Zbl0141.05403MR0209411

Citations in EuDML Documents

top
  1. Jiří Jarník, Jaroslav Kurzweil, A new and more powerful concept of the PU-integral
  2. Jaroslav Kurzweil, Jean Mawhin, Washek Frank Pfeffer, An integral defined by approximating B V partitions of unity
  3. Giuseppa Riccobono, A PU-integral on an abstract metric space
  4. Wolfgang B. Jurkat, D. J. F. Nonnenmacher, A Hake-type property for the ν 1 -integral and its relation to other integration processes
  5. V. Marraffa, A scalar Volterra derivative for the PoU-integral
  6. W. Jurkat, D. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in Rn
  7. Jean Mawhin, Nonstandard analysis and generalized Riemann integrals
  8. Wolfgang B. Jurkat, D. J. F. Nonnenmacher, The fundamental theorem for the ν 1 -integral on more general sets and a corresponding divergence theorem with singularities
  9. Wolfgang B. Jurkat, The divergence theorem and Perron integration with exceptional sets
  10. Jan Malý, Washek Frank Pfeffer, Henstock-Kurzweil integral on BV sets

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.