Finite automata and algebraic extensions of function fields
- [1] Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 379-420
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKedlaya, Kiran S.. "Finite automata and algebraic extensions of function fields." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 379-420. <http://eudml.org/doc/249608>.
@article{Kedlaya2006,
abstract = {We give an automata-theoretic description of the algebraic closure of the rational function field $\mathbb\{F\}_q(t)$ over a finite field $\mathbb\{F\}_q$, generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over $\mathbb\{F\}_q$. In passing, we obtain a characterization of well-ordered sets of rational numbers whose base $p$ expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive characteristic of Newton’s algorithm for finding local expansions of plane curves. We also conjecture a generalization of our results to several variables.},
affiliation = {Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA},
author = {Kedlaya, Kiran S.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {379-420},
publisher = {Université Bordeaux 1},
title = {Finite automata and algebraic extensions of function fields},
url = {http://eudml.org/doc/249608},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Kedlaya, Kiran S.
TI - Finite automata and algebraic extensions of function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 379
EP - 420
AB - We give an automata-theoretic description of the algebraic closure of the rational function field $\mathbb{F}_q(t)$ over a finite field $\mathbb{F}_q$, generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over $\mathbb{F}_q$. In passing, we obtain a characterization of well-ordered sets of rational numbers whose base $p$ expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive characteristic of Newton’s algorithm for finding local expansions of plane curves. We also conjecture a generalization of our results to several variables.
LA - eng
UR - http://eudml.org/doc/249608
ER -
References
top- S. Abhyankar, Two notes on formal power series. Proc. Amer. Math. Soc. 7 (1956), 903–905. Zbl0073.02601MR80647
- J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge Univ. Press, 2003. Zbl1086.11015MR1997038
- C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable. Amer. Math. Soc., 1951. Zbl0045.32301MR42164
- G. Christol, Ensembles presque periodiques -reconnaissables. Theoret. Comput. Sci. 9 (1979), 141–145. Zbl0402.68044MR535129
- G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108 (1980), 401–419. Zbl0472.10035MR614317
- P. Deligne, Intégration sur un cycle évanescent. Invent. Math. 76 (1984), 129–143. Zbl0538.13007MR739629
- H. Furstenberg, Algebraic functions over finite fields. J. Alg. 7 (1967), 271–277. Zbl0175.03903MR215820
- H. Hahn, Über die nichtarchimedische Größensysteme (1907). Gesammelte Abhandlungen I, Springer-Verlag, 1995.
- D.R. Hayes, A brief introduction to Drinfel’d modules. The Arithmetic of Function Fields (edited by D. Goss, D.R. Hayes, and M.I. Rosen), 1–32, de Gruyter, 1992. Zbl0793.11015MR1196509
- I. Kaplansky, Maximal fields with valuations. Duke Math. J. 9 (1942), 303–321. Zbl0061.05506MR6161
- K.S. Kedlaya, The algebraic closure of the power series field in positive characteristic. Proc. Amer. Math. Soc. 129 (2001), 3461–3470. Zbl1012.12007MR1860477
- K.S. Kedlaya, Power series and -adic algebraic closures. J. Number Theory89 (2001), 324–339. Zbl0980.12002MR1845241
- K.S. Kedlaya, Algebraic generalized power series and automata. arXiv preprint math. AC/0110089, 2001.
- J.B. Kruskal, The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13 (1972), 297–305. Zbl0244.06002MR306057
- D.S. Passman, The Algebraic Structure of Group Rings. Wiley, 1977. Zbl0368.16003MR470211
- O. Salon, Suites automatiques à multi-indices et algébricité. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 501–504. Zbl0628.10007MR916320
- O. Salon, Suites automatiques à multi-indices (with an appendix by J. Shallit). Sem. Théorie Nombres Bordeaux 4 (1986–1987), 1–27. Zbl0653.10049
- J.-P. Serre, Local Fields (translated by M.J. Greenberg). Springer-Verlag, 1979. Zbl0423.12016MR554237
- H. Sharif, C.F. Woodcock, Algebraic functions over a field of positive characteristic and Hadamard products. J. London Math. Soc. 37 (1988), 395–403. Zbl0612.12018MR939116
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.