Finite automata and algebraic extensions of function fields

Kiran S. Kedlaya[1]

  • [1] Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 2, page 379-420
  • ISSN: 1246-7405

Abstract

top
We give an automata-theoretic description of the algebraic closure of the rational function field 𝔽 q ( t ) over a finite field 𝔽 q , generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over 𝔽 q . In passing, we obtain a characterization of well-ordered sets of rational numbers whose base p expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive characteristic of Newton’s algorithm for finding local expansions of plane curves. We also conjecture a generalization of our results to several variables.

How to cite

top

Kedlaya, Kiran S.. "Finite automata and algebraic extensions of function fields." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 379-420. <http://eudml.org/doc/249608>.

@article{Kedlaya2006,
abstract = {We give an automata-theoretic description of the algebraic closure of the rational function field $\mathbb\{F\}_q(t)$ over a finite field $\mathbb\{F\}_q$, generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over $\mathbb\{F\}_q$. In passing, we obtain a characterization of well-ordered sets of rational numbers whose base $p$ expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive characteristic of Newton’s algorithm for finding local expansions of plane curves. We also conjecture a generalization of our results to several variables.},
affiliation = {Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139, USA},
author = {Kedlaya, Kiran S.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {379-420},
publisher = {Université Bordeaux 1},
title = {Finite automata and algebraic extensions of function fields},
url = {http://eudml.org/doc/249608},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Kedlaya, Kiran S.
TI - Finite automata and algebraic extensions of function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 379
EP - 420
AB - We give an automata-theoretic description of the algebraic closure of the rational function field $\mathbb{F}_q(t)$ over a finite field $\mathbb{F}_q$, generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over $\mathbb{F}_q$. In passing, we obtain a characterization of well-ordered sets of rational numbers whose base $p$ expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive characteristic of Newton’s algorithm for finding local expansions of plane curves. We also conjecture a generalization of our results to several variables.
LA - eng
UR - http://eudml.org/doc/249608
ER -

References

top
  1. S. Abhyankar, Two notes on formal power series. Proc. Amer. Math. Soc. 7 (1956), 903–905. Zbl0073.02601MR80647
  2. J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge Univ. Press, 2003. Zbl1086.11015MR1997038
  3. C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable. Amer. Math. Soc., 1951. Zbl0045.32301MR42164
  4. G. Christol, Ensembles presque periodiques k -reconnaissables. Theoret. Comput. Sci. 9 (1979), 141–145. Zbl0402.68044MR535129
  5. G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108 (1980), 401–419. Zbl0472.10035MR614317
  6. P. Deligne, Intégration sur un cycle évanescent. Invent. Math. 76 (1984), 129–143. Zbl0538.13007MR739629
  7. H. Furstenberg, Algebraic functions over finite fields. J. Alg. 7 (1967), 271–277. Zbl0175.03903MR215820
  8. H. Hahn, Über die nichtarchimedische Größensysteme (1907). Gesammelte Abhandlungen I, Springer-Verlag, 1995. 
  9. D.R. Hayes, A brief introduction to Drinfel’d modules. The Arithmetic of Function Fields (edited by D. Goss, D.R. Hayes, and M.I. Rosen), 1–32, de Gruyter, 1992. Zbl0793.11015MR1196509
  10. I. Kaplansky, Maximal fields with valuations. Duke Math. J. 9 (1942), 303–321. Zbl0061.05506MR6161
  11. K.S. Kedlaya, The algebraic closure of the power series field in positive characteristic. Proc. Amer. Math. Soc. 129 (2001), 3461–3470. Zbl1012.12007MR1860477
  12. K.S. Kedlaya, Power series and p -adic algebraic closures. J. Number Theory89 (2001), 324–339. Zbl0980.12002MR1845241
  13. K.S. Kedlaya, Algebraic generalized power series and automata. arXiv preprint math. AC/0110089, 2001. 
  14. J.B. Kruskal, The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13 (1972), 297–305. Zbl0244.06002MR306057
  15. D.S. Passman, The Algebraic Structure of Group Rings. Wiley, 1977. Zbl0368.16003MR470211
  16. O. Salon, Suites automatiques à multi-indices et algébricité. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 501–504. Zbl0628.10007MR916320
  17. O. Salon, Suites automatiques à multi-indices (with an appendix by J. Shallit). Sem. Théorie Nombres Bordeaux 4 (1986–1987), 1–27. Zbl0653.10049
  18. J.-P. Serre, Local Fields (translated by M.J. Greenberg). Springer-Verlag, 1979. Zbl0423.12016MR554237
  19. H. Sharif, C.F. Woodcock, Algebraic functions over a field of positive characteristic and Hadamard products. J. London Math. Soc. 37 (1988), 395–403. Zbl0612.12018MR939116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.