Cobham’s theorem and its extensions
- [1] Jason Bell Department of Mathematics Simon Fraser University Burnaby, BC V5A 1S6 Canada
Actes des rencontres du CIRM (2009)
- Volume: 1, Issue: 1, page 11-16
- ISSN: 2105-0597
Access Full Article
topAbstract
topHow to cite
topBell, Jason P.. "Cobham’s theorem and its extensions." Actes des rencontres du CIRM 1.1 (2009): 11-16. <http://eudml.org/doc/10001>.
@article{Bell2009,
abstract = {Cobham’s theorem says that if $k$ and $\ell $ are two multiplicatively independent integers and $f(n)$ is a $k$- and $\ell $-automatic sequence, then $f(n)$ is eventually periodic. We give a summary of recent work on automatic sequences and their relation to Cobham’s theorem.},
affiliation = {Jason Bell Department of Mathematics Simon Fraser University Burnaby, BC V5A 1S6 Canada},
author = {Bell, Jason P.},
journal = {Actes des rencontres du CIRM},
language = {eng},
month = {3},
number = {1},
pages = {11-16},
publisher = {CIRM},
title = {Cobham’s theorem and its extensions},
url = {http://eudml.org/doc/10001},
volume = {1},
year = {2009},
}
TY - JOUR
AU - Bell, Jason P.
TI - Cobham’s theorem and its extensions
JO - Actes des rencontres du CIRM
DA - 2009/3//
PB - CIRM
VL - 1
IS - 1
SP - 11
EP - 16
AB - Cobham’s theorem says that if $k$ and $\ell $ are two multiplicatively independent integers and $f(n)$ is a $k$- and $\ell $-automatic sequence, then $f(n)$ is eventually periodic. We give a summary of recent work on automatic sequences and their relation to Cobham’s theorem.
LA - eng
UR - http://eudml.org/doc/10001
ER -
References
top- B. Adamczewski and J. Bell. Function fields in positive characteristic: expansions and Cobham’s theorem. J. Algebra319 (2008), no. 6, 2337–2350. Zbl1151.11060MR2388308
- J.-P. Allouche and J. Shallit. The ring of -regular sequences. Theoret. Comput. Sci.98 (1992), 163–197. Zbl0774.68072MR1166363
- J.-P. Allouche and J. Shallit. Automatic sequences. Theory, applications, generalizations. Cambridge University Press, Cambridge, 2003. Zbl1086.11015MR1997038
- P.-G. Becker. -regular power series and Mahler-type functional equations. J. Number Theory49 (1994), 269–286. Zbl0821.11013MR1307967
- J. Bell. A generalization of Cobham’s theorem for regular sequences. Sém. Lothar. Combin. 54A (2005/07), Art. B54Ap, 15 pp. MR2223028
- J. Berstel and C. Reutenauer. Rational Series and Their Languages EATCS Monographs on Theoretical Computer Science (12), W. Brauer, G. Rozenberg, A. Saloma (Eds.) Springer-Verlag Berlin, Heidelberg 1988. Zbl0668.68005MR971022
- B. Bollobás. Graph theory. An introductory course. Springer-Verlag, New York-Berlin, 1979. Zbl0411.05032MR536131
- C. Chevalley. Introduction to the Theory of Algebraic Functions of One Variable. Mathematical Surveys No. VI, Amer. Math. Soc., 1951. Zbl0045.32301MR42164
- G. Christol. Ensembles presques périodiques -reconnaissables. Theor. Comput. Sci.9 (1979), 141–145. Zbl0402.68044MR535129
- G. Christol, T. Kamae, M. Mendès France & G. Rauzy. Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108 (1980), 401–419. Zbl0472.10035MR614317
- A. Cobham. On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory3 (1969), 186–192. Zbl0179.02501MR250789
- A. Cobham. Uniform tag sequences. Math. Systems Theory6 (1972), 164–192. Zbl0253.02029MR457011
- F. Durand. A generalization of Cobham’s theorem. Theory Comput. Systems31 (1998), 169–185. Zbl0895.68081MR1491657
- F. Durand. A theorem of Cobham for non-primitive substitutions. Acta Arith.104 (2002), no. 3, 225–241. Zbl1014.11016MR1914721
- G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence sequences. Mathematical Surveys and Monographs, 104. American Mathematical Society, Providence, RI, 2003. Zbl1033.11006MR1990179
- S. Fabre. Une généralisation du théorème de Cobham. Acta Arith.67 (1994), 197–208. Zbl0814.11015MR1292734
- I. Fagnot. On the subword equivalence problem for morphic words. Discrete Appl. Math.75 (1997), no. 3, 231–253. Zbl0879.68064MR1452927
- H. Hahn. Über die nichtarchimedische Größensysteme (1907), reprinted in Gesammelte Abhandlungen I, Springer-Verlag, 1995.
- K. Kedlaya. The algebraic closure of the power series field in positive characteristic.Proc. Amer. Math. Soc.129 (2001), 3461–3470. Zbl1012.12007MR1860477
- K. Kedlaya. Finite automata and algebraic extensions of function fields. J. Théor. Nombres Bordeaux18 (2006), 379–420. Zbl1161.11317MR2289431
- G. Krause and T. Lenagan. Growth of Algebras and Gelfand–Kirillov Dimension, revised edition. Grad. Stud. Math., vol. 22, Amer. Math. Soc., Providence, RI, 2000. Zbl0957.16001MR1721834
- M. Mendès France. Sur les décimales des nombres algébriques réels, in Sémin. Théor. Nombres, Bordeaux, 1979–1980, Exp. No. 28, 7 pp., Univ. Bordeaux I, Talence, 1980. Zbl0458.10007MR604222
- B. Randé. Équations fonctionnelles de Mahler et applications aux suites -régulières. PhD thesis, Université Bordeaux I, 1992.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.