Small exponent point groups on elliptic curves
Florian Luca[1]; James McKee[2]; Igor E. Shparlinski[3]
- [1] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
- [2] Department of Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK
- [3] Department of Computing Macquarie University Sydney, NSW 2109, Australia
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 471-476
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLuca, Florian, McKee, James, and Shparlinski, Igor E.. "Small exponent point groups on elliptic curves." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 471-476. <http://eudml.org/doc/249612>.
@article{Luca2006,
abstract = {Let $\{\mathbf\{E\}\}$ be an elliptic curve defined over $\{\mathbf\{F\}\}_q$, the finite field of $q$ elements. We show that for some constant $\eta >0$ depending only on $q$, there are infinitely many positive integers $n$ such that the exponent of $\{\mathbf\{E\}\}(\{\mathbf\{F\}\}_\{q^n\})$, the group of $\{\mathbf\{F\}\}_\{q^n\}$-rational points on $\{\mathbf\{E\}\}$, is at most $q^\{n\}\exp \left( - n^\{ \eta /\log \log n\}\right)$. This is an analogue of a result of R. Schoof on the exponent of the group $\{\mathbf\{E\}\}(\{\mathbf\{F\}\}_p)$ of $\{\mathbf\{F\}\}_\{p\}$-rational points, when a fixed elliptic curve $\{\mathbf\{E\}\}$ is defined over $\mathbb\{Q\}$ and the prime $p$ tends to infinity.},
affiliation = {Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México; Department of Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK; Department of Computing Macquarie University Sydney, NSW 2109, Australia},
author = {Luca, Florian, McKee, James, Shparlinski, Igor E.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {471-476},
publisher = {Université Bordeaux 1},
title = {Small exponent point groups on elliptic curves},
url = {http://eudml.org/doc/249612},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Luca, Florian
AU - McKee, James
AU - Shparlinski, Igor E.
TI - Small exponent point groups on elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 471
EP - 476
AB - Let ${\mathbf{E}}$ be an elliptic curve defined over ${\mathbf{F}}_q$, the finite field of $q$ elements. We show that for some constant $\eta >0$ depending only on $q$, there are infinitely many positive integers $n$ such that the exponent of ${\mathbf{E}}({\mathbf{F}}_{q^n})$, the group of ${\mathbf{F}}_{q^n}$-rational points on ${\mathbf{E}}$, is at most $q^{n}\exp \left( - n^{ \eta /\log \log n}\right)$. This is an analogue of a result of R. Schoof on the exponent of the group ${\mathbf{E}}({\mathbf{F}}_p)$ of ${\mathbf{F}}_{p}$-rational points, when a fixed elliptic curve ${\mathbf{E}}$ is defined over $\mathbb{Q}$ and the prime $p$ tends to infinity.
LA - eng
UR - http://eudml.org/doc/249612
ER -
References
top- L. M. Adleman, C. Pomerance, R. S. Rumely, On distinguishing prime numbers from composite numbers. Annals Math. 117 (1983), 173–206. Zbl0526.10004MR683806
- I. Blake, G. Seroussi, N. Smart, Elliptic curves in cryptography. London Math. Soc., Lecture Note Series 265, Cambridge Univ. Press, 1999. Zbl0937.94008MR1771549
- Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of and . Math. Zeitschrift 243 (2003), 79–84. Zbl1021.11001MR1953049
- A. Cojocaru, On the cyclicity of the group of -rational points of non-CM elliptic curves. J. Number Theory 96 (2002), 335–350. Zbl1038.11034MR1932460
- A. Cojocaru, Cyclicity of CM elliptic curves modulo . Trans. Amer. Math. Soc. 355 (2003), 2651–2662. Zbl1021.11019MR1975393
- A. Cojocaru, M. R. Murty, Cyclicity of elliptic curves modulo and elliptic curve analogues of Linnik’s problem. Mathematische Annalen 330 (2004), 601–625. Zbl1087.11037MR2099195
- W. Duke, Almost all reductions of an elliptic curve have a large exponent. Comptes Rendus Mathématiques 337 (2003), 689–692. Zbl1048.11045MR2030403
- P. Erdös, C. Pomerance, E. Schmutz, Carmichael’s lambda function. Acta Arith. 58 (1991), 363–385. Zbl0734.11047MR1121092
- J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem. Invent. Math. 54 (1979), 271–296. Zbl0401.12014MR553223
- F. Luca, I. E. Shparlinski, On the exponent of the group of points on elliptic curves in extension fields. Intern. Math. Research Notices 23 (2005), 1391–1409. Zbl1082.11041MR2152235
- R. Schoof, The exponents of the group of points on the reduction of an elliptic curve, Arithmetic Algebraic Geometry. Progr. Math. 89, Birkhäuser, Boston, MA, 1991, 325–335. Zbl0726.14023MR1085266
- I. E. Shparlinski, Orders of points on elliptic curves, Affine Algebraic Geometry. Contemp. Math. 369, Amer. Math. Soc., 2005, 245–252. Zbl1063.11016MR2126665
- J. H. Silverman, The arithmetic of elliptic curves. Springer-Verlag, Berlin, 1995. Zbl0585.14026MR817210
- J. H. Silverman, J. Tate, Rational points on elliptic curves. Springer-Verlag, Berlin, 1992. Zbl0752.14034MR1171452
- S. G. Vlăduţ, Cyclicity statistics for elliptic curves over finite fields. Finite Fields and Their Appl. 5 (1999), 13–25. Zbl0927.11032MR1667099
- S. G. Vlăduţ, A note on the cyclicity of elliptic curves over finite field extensions. Finite Fields and Their Appl. 5 (1999), 354–363. Zbl1022.11030MR1711837
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.