# Asymptotics of an optimal compliance-location problem

Giuseppe Buttazzo; Filippo Santambrogio; Nicolas Varchon

ESAIM: Control, Optimisation and Calculus of Variations (2006)

- Volume: 12, Issue: 4, page 752-769
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topButtazzo, Giuseppe, Santambrogio, Filippo, and Varchon, Nicolas. "Asymptotics of an optimal compliance-location problem." ESAIM: Control, Optimisation and Calculus of Variations 12.4 (2006): 752-769. <http://eudml.org/doc/249616>.

@article{Buttazzo2006,

abstract = { We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.
},

author = {Buttazzo, Giuseppe, Santambrogio, Filippo, Varchon, Nicolas},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Compliance; optimal location; shape optimization; Γ-convergence.; compliance; -convergence},

language = {eng},

month = {10},

number = {4},

pages = {752-769},

publisher = {EDP Sciences},

title = {Asymptotics of an optimal compliance-location problem},

url = {http://eudml.org/doc/249616},

volume = {12},

year = {2006},

}

TY - JOUR

AU - Buttazzo, Giuseppe

AU - Santambrogio, Filippo

AU - Varchon, Nicolas

TI - Asymptotics of an optimal compliance-location problem

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2006/10//

PB - EDP Sciences

VL - 12

IS - 4

SP - 752

EP - 769

AB - We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.

LA - eng

KW - Compliance; optimal location; shape optimization; Γ-convergence.; compliance; -convergence

UR - http://eudml.org/doc/249616

ER -

## References

top- G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002).
- M. Bendsoe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications. Springer-Verlag, New York (2003).
- G. Bouchitté and G. Buttazzo, Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992) 101–117.
- G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal. C.R. Acad. Sci. Paris Ser. I335 (2002) 1–6.
- D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems. Birkäuser, Boston, Progress in Nonlinear Differential Equations and their Applications 65 (2005).
- G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc.23 (1990) 531–535.
- G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim.23 (1991) 17–49.
- G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal.122 (1993) 183–195.
- G. Buttazzo, G. Dal Maso, A. Garroni and A. Malusa, On the relaxed formulation of Some Shape Optimization Problems. Adv. Math. Sci. Appl.7 (1997) 1–24.
- D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs. Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. II (1982), 98–138 and Vol. III (1982) 154–178.
- G. Dal Maso, An Introduction to Γ-convergence. Birkhauser, Basel (1992).
- L. Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der Math. Wiss., Vol. 65, Springer-Verlag, Berlin (1953).
- A. Henrot and M. Pierre, Variation et Optimisation de Forme. Une analyse géométrique. Springer-Verlag, Berlin, Mathématiques et Applications 48 (2005).
- F. Morgan and R. Bolton, Hexagonal Economic Regions Solve the Location Problem. Amer. Math. Monthly109 (2002) 165–172.
- S. Mosconi and P. Tilli, Γ-Convergence for the Irrigation Problem, 2003. J. Conv. Anal.12 (2005) 145–158.
- J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization. Shape sensitivity analysis. Springer-Verlag, Berlin (1992).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.