Special values of multiple gamma functions
William Duke[1]; Özlem Imamoḡlu[2]
- [1] UCLA Mathematics Dept. Box 951555 Los Angeles, CA 90095-1555, USA
- [2] UCSB Mathematics Dept. Santa Barbara, CA 93106, USA Current address: ETH, Mathematics Dept. CH-8092, Zürich, Switzerland
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 113-123
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDuke, William, and Imamoḡlu, Özlem. "Special values of multiple gamma functions." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 113-123. <http://eudml.org/doc/249633>.
@article{Duke2006,
abstract = {We give a Chowla-Selberg type formula that connects a generalization of the eta-function to $\operatorname\{GL\}(n)$ with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.},
affiliation = {UCLA Mathematics Dept. Box 951555 Los Angeles, CA 90095-1555, USA; UCSB Mathematics Dept. Santa Barbara, CA 93106, USA Current address: ETH, Mathematics Dept. CH-8092, Zürich, Switzerland},
author = {Duke, William, Imamoḡlu, Özlem},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {113-123},
publisher = {Université Bordeaux 1},
title = {Special values of multiple gamma functions},
url = {http://eudml.org/doc/249633},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Duke, William
AU - Imamoḡlu, Özlem
TI - Special values of multiple gamma functions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 113
EP - 123
AB - We give a Chowla-Selberg type formula that connects a generalization of the eta-function to $\operatorname{GL}(n)$ with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.
LA - eng
UR - http://eudml.org/doc/249633
ER -
References
top- V. Adamchik, Multiple Gamma Function and Its Application to Computation of Series. Ramanujan Journal 9 (2005), 271–288. Zbl1088.33014MR2173489
- E. W. Barnes, On the theory of the multiple Gamma function. Cambr. Trans. 19 (1904), 374–425.
- J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. Zbl0888.11001MR1483315
- P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56 (1903), 615–644. Zbl34.0461.02MR1511190
- E. Hecke, Analytische Arithmetik der positive quadratischen Formen, (1940) # 41 in Mathematische Werke. Zbl0024.00902MR3665
- M.J. Liouville, Journal de Mathématiques Pure et Appliquées.
- S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256. Zbl0041.42701MR31145
- J. Dufresnoy, Ch. Pisot, Sur la relation fonctionnelle . Bull. Soc. Math. Belg. 15 (1963), 259–270. Zbl0122.09802MR161055
- P. Sarnak, Determinants of Laplacians; heights and finiteness. Analysis, et cetera, 601–622, Academic Press, Boston, MA, 1990. Zbl0703.53037MR1039364
- S. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967), 86–110. Zbl0166.05204MR215797
- T. Shintani, On special values of zeta functions of totally real algebraic number fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 591–597, Acad. Sci. Fennica, Helsinki, 1980. Zbl0426.12008MR562660
- C. L. Siegel, Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (1935), no. 3, 527–606. [in Gesammelte Abhandlungen] Zbl0012.19703MR1503238
- C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Fundamental Research, Bombay 1965. Zbl0278.10001MR262150
- H. M. Srivastava, J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001. Zbl1014.33001MR1849375
- A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation. Trans. Amer. Math. Soc. 183 (1973), 477–486. Zbl0274.10039MR323735
- I. Vardi, Determinants of Laplacians and multiple gamma functions. SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. Zbl0641.33003MR930041
- B. A. Venkov, Elementary number theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen 1970. Zbl0204.37101MR265267
- M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire . Journées Arithmétiques de Luminy , 235–249, Astérisque 61 , Soc. Math. France, Paris, 1979. Zbl0401.10036MR556676
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.