Special values of multiple gamma functions

William Duke[1]; Özlem Imamoḡlu[2]

  • [1] UCLA Mathematics Dept. Box 951555 Los Angeles, CA 90095-1555, USA
  • [2] UCSB Mathematics Dept. Santa Barbara, CA 93106, USA Current address: ETH, Mathematics Dept. CH-8092, Zürich, Switzerland

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 1, page 113-123
  • ISSN: 1246-7405

Abstract

top
We give a Chowla-Selberg type formula that connects a generalization of the eta-function to GL ( n ) with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

How to cite

top

Duke, William, and Imamoḡlu, Özlem. "Special values of multiple gamma functions." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 113-123. <http://eudml.org/doc/249633>.

@article{Duke2006,
abstract = {We give a Chowla-Selberg type formula that connects a generalization of the eta-function to $\operatorname\{GL\}(n)$ with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.},
affiliation = {UCLA Mathematics Dept. Box 951555 Los Angeles, CA 90095-1555, USA; UCSB Mathematics Dept. Santa Barbara, CA 93106, USA Current address: ETH, Mathematics Dept. CH-8092, Zürich, Switzerland},
author = {Duke, William, Imamoḡlu, Özlem},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {113-123},
publisher = {Université Bordeaux 1},
title = {Special values of multiple gamma functions},
url = {http://eudml.org/doc/249633},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Duke, William
AU - Imamoḡlu, Özlem
TI - Special values of multiple gamma functions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 113
EP - 123
AB - We give a Chowla-Selberg type formula that connects a generalization of the eta-function to $\operatorname{GL}(n)$ with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.
LA - eng
UR - http://eudml.org/doc/249633
ER -

References

top
  1. V. Adamchik, Multiple Gamma Function and Its Application to Computation of Series. Ramanujan Journal 9 (2005), 271–288. Zbl1088.33014MR2173489
  2. E. W. Barnes, On the theory of the multiple Gamma function. Cambr. Trans. 19 (1904), 374–425. 
  3. J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. Zbl0888.11001MR1483315
  4. P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56 (1903), 615–644. Zbl34.0461.02MR1511190
  5. E. Hecke, Analytische Arithmetik der positive quadratischen Formen, (1940) # 41 in Mathematische Werke. Zbl0024.00902MR3665
  6. M.J. Liouville, Journal de Mathématiques Pure et Appliquées. 
  7. S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256. Zbl0041.42701MR31145
  8. J. Dufresnoy, Ch. Pisot, Sur la relation fonctionnelle f ( x + 1 ) - f ( x ) = ϕ ( x ) . Bull. Soc. Math. Belg. 15 (1963), 259–270. Zbl0122.09802MR161055
  9. P. Sarnak, Determinants of Laplacians; heights and finiteness. Analysis, et cetera, 601–622, Academic Press, Boston, MA, 1990. Zbl0703.53037MR1039364
  10. S. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967), 86–110. Zbl0166.05204MR215797
  11. T. Shintani, On special values of zeta functions of totally real algebraic number fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 591–597, Acad. Sci. Fennica, Helsinki, 1980. Zbl0426.12008MR562660
  12. C. L. Siegel, Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (1935), no. 3, 527–606. [in Gesammelte Abhandlungen] Zbl0012.19703MR1503238
  13. C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Fundamental Research, Bombay 1965. Zbl0278.10001MR262150
  14. H. M. Srivastava, J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001. Zbl1014.33001MR1849375
  15. A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation. Trans. Amer. Math. Soc. 183 (1973), 477–486. Zbl0274.10039MR323735
  16. I. Vardi, Determinants of Laplacians and multiple gamma functions. SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. Zbl0641.33003MR930041
  17. B. A. Venkov, Elementary number theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen 1970. Zbl0204.37101MR265267
  18. M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL ( 2 , ) . Journées Arithmétiques de Luminy , 235–249, Astérisque 61 , Soc. Math. France, Paris, 1979. Zbl0401.10036MR556676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.