Solving conics over function fields
Mark van Hoeij[1]; John Cremona[2]
- [1] Department of Mathematics Florida State University Tallahassee, FL 32306-3027, USA
- [2] School of Mathematical Sciences University of Nottingham University Park, Nottingham, NG7 2RD, UK
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 3, page 595-606
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topvan Hoeij, Mark, and Cremona, John. "Solving conics over function fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 595-606. <http://eudml.org/doc/249634>.
@article{vanHoeij2006,
abstract = {Let $F$ be a field whose characteristic is not $2$ and $K = F(t)$. We give a simple algorithm to find, given $a,b,c \in K^*$, a nontrivial solution in $K$ (if it exists) to the equation $aX^2 + bY^2 + cZ^2 = 0$. The algorithm requires, in certain cases, the solution of a similar equation with coefficients in $F$; hence we obtain a recursive algorithm for solving diagonal conics over $\mathbb\{Q\}(t_1,\dots ,t_n)$ (using existing algorithms for such equations over $\mathbb\{Q\}$) and over $\{\mathbb\{F\}\}_q(t_1,\dots ,t_n)$.},
affiliation = {Department of Mathematics Florida State University Tallahassee, FL 32306-3027, USA; School of Mathematical Sciences University of Nottingham University Park, Nottingham, NG7 2RD, UK},
author = {van Hoeij, Mark, Cremona, John},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {conic; solubility certificate; reduced term},
language = {eng},
number = {3},
pages = {595-606},
publisher = {Université Bordeaux 1},
title = {Solving conics over function fields},
url = {http://eudml.org/doc/249634},
volume = {18},
year = {2006},
}
TY - JOUR
AU - van Hoeij, Mark
AU - Cremona, John
TI - Solving conics over function fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 595
EP - 606
AB - Let $F$ be a field whose characteristic is not $2$ and $K = F(t)$. We give a simple algorithm to find, given $a,b,c \in K^*$, a nontrivial solution in $K$ (if it exists) to the equation $aX^2 + bY^2 + cZ^2 = 0$. The algorithm requires, in certain cases, the solution of a similar equation with coefficients in $F$; hence we obtain a recursive algorithm for solving diagonal conics over $\mathbb{Q}(t_1,\dots ,t_n)$ (using existing algorithms for such equations over $\mathbb{Q}$) and over ${\mathbb{F}}_q(t_1,\dots ,t_n)$.
LA - eng
KW - conic; solubility certificate; reduced term
UR - http://eudml.org/doc/249634
ER -
References
top- T. Cochrane, P. Mitchell, Small solutions of the Legendre equation. J. Number Theory 70 (1998), no. 1, pp. 62–66. Zbl0908.11012MR1619944
- J. Cremona, D. Rusin, Efficient solution of rational conics. Math. Comp. 72 (2003), no. 243, pp. 1417–1441. Zbl1022.11031MR1972744
- C. F. Gauss, Disquisitiones Arithmeticae. Springer-Verlag, 1986. Zbl0585.10001MR837656
- A. K. Lenstra, H. W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), no. 4, pp. 515–534. Zbl0488.12001MR682664
- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24 (1997), 235–265. Computational algebra and number theory (London, 1993). See also http://magma.maths.usyd.edu.au/magma/. Zbl0898.68039MR1484478
- M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, Maple 6 Programming Guide. Waterloo Maple Inc. (Waterloo, Canada, 2000). Zbl0877.68070
- M. Reid, Chapters on Algebraic Surfaces, Chapter C: Guide to the classification of surfaces. In J. Kollár (Ed.), IAS/Park City lecture notes series 3 (1993), AMS, Providence R.I., 1997, 1–154. See also www.maths.warwick.ac.uk/~miles/surf/ParkC/chC.ps. Zbl0910.14016MR1442522
- J. Schicho, Rational parametrization of real algebraic surfaces. Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York, 1998, 302–308. Zbl0939.14034MR1805193
- J. Schicho, Proper parametrization of surfaces with a rational pencil. Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), ACM, New York, 2000, 292–300. Zbl1326.68369MR1805132
- D. Simon, Solving quadratic equations using reduced unimodular quadratic forms. Math. Comp. 74 (2005), no. 251, pp. 1531–1543. Zbl1078.11072MR2137016
- C. van de Woestijne, Surface Parametrisation without Diagonalisation. Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation (Genoa), ACM, New York, 2006, 340–344. MR2289140
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.