Factoring Polynomials with Rational Coefficients.

H.W. jr. Lenstra; A.K. Lenstra; L. Lovász

Mathematische Annalen (1982)

  • Volume: 261, page 515-534
  • ISSN: 0025-5831; 1432-1807/e

How to cite

top

Lenstra, H.W. jr., Lenstra, A.K., and Lovász, L.. "Factoring Polynomials with Rational Coefficients.." Mathematische Annalen 261 (1982): 515-534. <http://eudml.org/doc/182903>.

@article{Lenstra1982,
author = {Lenstra, H.W. jr., Lenstra, A.K., Lovász, L.},
journal = {Mathematische Annalen},
keywords = {polynomial-time algorithm; factorization of primitive polynomials; algorithm for basis reduction; diophantine approximation; operations research; cryptography},
pages = {515-534},
title = {Factoring Polynomials with Rational Coefficients.},
url = {http://eudml.org/doc/182903},
volume = {261},
year = {1982},
}

TY - JOUR
AU - Lenstra, H.W. jr.
AU - Lenstra, A.K.
AU - Lovász, L.
TI - Factoring Polynomials with Rational Coefficients.
JO - Mathematische Annalen
PY - 1982
VL - 261
SP - 515
EP - 534
KW - polynomial-time algorithm; factorization of primitive polynomials; algorithm for basis reduction; diophantine approximation; operations research; cryptography
UR - http://eudml.org/doc/182903
ER -

Citations in EuDML Documents

top
  1. Manuel Delgado, Commutative images of rational languages and the Abelian kernel of a monoid
  2. Manuel Delgado, Commutative images of rational languages and the abelian kernel of a monoid
  3. Mark van Hoeij, John Cremona, Solving conics over function fields
  4. Karim Belabas, Mark van Hoeij, Jürgen Klüners, Allan Steel, Factoring polynomials over global fields
  5. Jean-Marc Couveignes, Calcul et rationalité de fonctions de Belyi en genre 0
  6. Henri Laville, Brigitte Vallée, Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux
  7. Huguette Napias, A generalization of the LLL-algorithm over euclidean rings or orders
  8. Qiang Wu, A new exceptional polynomial for the integer transfinite diameter of [ 0 , 1 ]
  9. P. Glesser, Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles
  10. Guy Viry, Factorisation sur [ X ] des polynômes de degré élevé à l’aide d’un monomorphisme

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.