Factoring Polynomials with Rational Coefficients.

H.W. jr. Lenstra; A.K. Lenstra; L. Lovász

Mathematische Annalen (1982)

  • Volume: 261, page 515-534
  • ISSN: 0025-5831; 1432-1807/e

How to cite

top

Lenstra, H.W. jr., Lenstra, A.K., and Lovász, L.. "Factoring Polynomials with Rational Coefficients.." Mathematische Annalen 261 (1982): 515-534. <http://eudml.org/doc/182903>.

@article{Lenstra1982,
author = {Lenstra, H.W. jr., Lenstra, A.K., Lovász, L.},
journal = {Mathematische Annalen},
keywords = {polynomial-time algorithm; factorization of primitive polynomials; algorithm for basis reduction; diophantine approximation; operations research; cryptography},
pages = {515-534},
title = {Factoring Polynomials with Rational Coefficients.},
url = {http://eudml.org/doc/182903},
volume = {261},
year = {1982},
}

TY - JOUR
AU - Lenstra, H.W. jr.
AU - Lenstra, A.K.
AU - Lovász, L.
TI - Factoring Polynomials with Rational Coefficients.
JO - Mathematische Annalen
PY - 1982
VL - 261
SP - 515
EP - 534
KW - polynomial-time algorithm; factorization of primitive polynomials; algorithm for basis reduction; diophantine approximation; operations research; cryptography
UR - http://eudml.org/doc/182903
ER -

Citations in EuDML Documents

top
  1. Manuel Delgado, Commutative images of rational languages and the abelian kernel of a monoid
  2. Mark van Hoeij, John Cremona, Solving conics over function fields
  3. Jean-Marc Couveignes, Calcul et rationalité de fonctions de Belyi en genre 0
  4. Karim Belabas, Mark van Hoeij, Jürgen Klüners, Allan Steel, Factoring polynomials over global fields
  5. Manuel Delgado, Commutative images of rational languages and the Abelian kernel of a monoid
  6. Henri Laville, Brigitte Vallée, Distribution de la constante d'Hermite et du plus court vecteur dans les réseaux de dimension deux
  7. Huguette Napias, A generalization of the LLL-algorithm over euclidean rings or orders
  8. Qiang Wu, A new exceptional polynomial for the integer transfinite diameter of
  9. P. Glesser, Majoration de la norme des facteurs d'un polynôme : cas où toutes les racines du polynôme sont réelles
  10. Guy Viry, Factorisation sur des polynômes de degré élevé à l’aide d’un monomorphisme

NotesEmbed ?

top

You must be logged in to post comments.