Bases of canonical number systems in quartic algebraic number fields

Horst Brunotte[1]; Andrea Huszti[2]; Attila Pethő[2]

  • [1] Université Gauss Haus-Endt-Straße 88 D-40593 Düsseldorf, Germany
  • [2] Faculty of Informatics University of Debrecen P.O. Box 12, H-4010 Debrecen, Hungary Hungarian Academy of Sciences and University of Debrecen

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 3, page 537-557
  • ISSN: 1246-7405

Abstract

top
Canonical number systems can be viewed as natural generalizations of radix representations of ordinary integers to algebraic integers. A slightly modified version of an algorithm of B. Kovács and A. Pethő is presented here for the determination of canonical number systems in orders of algebraic number fields. Using this algorithm canonical number systems of some quartic fields are computed.

How to cite

top

Brunotte, Horst, Huszti, Andrea, and Pethő, Attila. "Bases of canonical number systems in quartic algebraic number fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 537-557. <http://eudml.org/doc/249640>.

@article{Brunotte2006,
abstract = {Canonical number systems can be viewed as natural generalizations of radix representations of ordinary integers to algebraic integers. A slightly modified version of an algorithm of B. Kovács and A. Pethő is presented here for the determination of canonical number systems in orders of algebraic number fields. Using this algorithm canonical number systems of some quartic fields are computed.},
affiliation = {Université Gauss Haus-Endt-Straße 88 D-40593 Düsseldorf, Germany; Faculty of Informatics University of Debrecen P.O. Box 12, H-4010 Debrecen, Hungary Hungarian Academy of Sciences and University of Debrecen; Faculty of Informatics University of Debrecen P.O. Box 12, H-4010 Debrecen, Hungary Hungarian Academy of Sciences and University of Debrecen},
author = {Brunotte, Horst, Huszti, Andrea, Pethő, Attila},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {canonical number system; radix representation; power integral basis; canonical number systems; orders of algebraic number fields; algorithm; quartic fields},
language = {eng},
number = {3},
pages = {537-557},
publisher = {Université Bordeaux 1},
title = {Bases of canonical number systems in quartic algebraic number fields},
url = {http://eudml.org/doc/249640},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Brunotte, Horst
AU - Huszti, Andrea
AU - Pethő, Attila
TI - Bases of canonical number systems in quartic algebraic number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 537
EP - 557
AB - Canonical number systems can be viewed as natural generalizations of radix representations of ordinary integers to algebraic integers. A slightly modified version of an algorithm of B. Kovács and A. Pethő is presented here for the determination of canonical number systems in orders of algebraic number fields. Using this algorithm canonical number systems of some quartic fields are computed.
LA - eng
KW - canonical number system; radix representation; power integral basis; canonical number systems; orders of algebraic number fields; algorithm; quartic fields
UR - http://eudml.org/doc/249640
ER -

References

top
  1. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, On a generalization of the radix representation – a survey, in “High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams”, Fields Institute Commucations, vol. 41 (2004), 19–27. Zbl1135.11007
  2. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hung., 108 (2005), 207–238. Zbl1110.11003MR2162561
  3. S. Akiyama, H. Brunotte and A. Pethő, Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert, J. Math. Anal. and Appl., 281 (2003), 402–415. Zbl1021.11005MR1980100
  4. S. Akiyama and H. Rao, New criteria for canonical number systems, Acta Arith., 111 (2004), 5–25. Zbl1049.11008MR2038059
  5. S. Akiyama and J. M. Thuswaldner, On the topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl. 49 (2005), no. 9-10, 1439–1485. Zbl1123.11004MR2149493
  6. T. Borbély, Általánosított számrendszerek, Master Thesis, University of Debrecen, 2003. 
  7. H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. (Szeged), 67 (2001), 521–527. Zbl0996.11067MR1876451
  8. H. Brunotte, On cubic CNS polynomials with three real roots, Acta Sci. Math. (Szeged), 70 (2004), 495 – 504. Zbl1064.11005MR2107523
  9. I. Gaál, Diophantine equations and power integral bases, Birkhäuser (Berlin), (2002). Zbl1016.11059MR1896601
  10. W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264–274. Zbl0472.10011MR632342
  11. E. H. Grossman, Number bases in quadratic fields, Studia Sci. Math. Hungar., 20 (1985), 55–58. Zbl0562.12004MR886005
  12. V. Grünwald, Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale), Giornale di matematiche di Battaglini, 23 (1885), 203–221, 367. 
  13. K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. (Debrecen), 23 (1976), 141–165. Zbl0354.10041MR437491
  14. I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99–107. Zbl0386.10007MR576942
  15. I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 159–164. Zbl0477.10012MR616887
  16. I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255–260. Zbl0309.12001MR389759
  17. D. E. Knuth, An imaginary number system, Comm. ACM, 3 (1960), 245 – 247. MR127508
  18. D. E. Knuth, The Art of Computer Programming, Vol. 2 Semi-numerical Algorithms, Addison Wesley (1998), London 3rd edition. Zbl0895.65001MR633878
  19. B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 405–407. Zbl0505.12001MR619892
  20. B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged), 55 (1991), 287–299. Zbl0760.11002MR1152592
  21. S. Körmendi, Canonical number systems in ( 2 3 ) , Acta Sci. Math. (Szeged), 50 (1986), 351–357. Zbl0616.10007MR882046
  22. G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383. Zbl0853.11021MR1359142
  23. M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341–354. Zbl0853.11022MR1316596
  24. P. Olajos, Power integral bases in the family of simplest quartic fields, Experiment. Math. 14 (2005), 129–132. Zbl1092.11042MR2169516
  25. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem,Computational Number Theory, Proc., Walter de Gruyter Publ. Comp. Eds.: A. Pethő, M. Pohst, H. G. Zimmer and H. C. Williams (1991), 31–43. Zbl0733.94014MR1151853
  26. A. Pethő, Notes on CNS polynomials and integral interpolation, More sets, graphs and numbers, 301–315, Bolyai Soc. Math. Stud., 15, Springer, Berlin, 2006. Zbl1136.11021MR2223397
  27. A. Pethő, Connections between power integral bases and radix representations in algebraic number fields, Proc. of the 2003 Nagoya Conf. “Yokoi-Chowla Conjecture and Related Problems”, Furukawa Total Pr. Co. (2004), 115–125. 
  28. R. Robertson, Power bases for cyclotomic integer rings, J. Number Theory, 69 (1998), 98–118. Zbl0923.11150MR1611089
  29. R. Robertson, Power bases for 2-power cyclotomic integer rings, J. Number Theory, 88 (2001), 196–209. Zbl0973.11091MR1825999
  30. K. Scheicher,Kanonische Ziffernsysteme und Automaten, Grazer Math. Ber., 333 (1997), 1–17. Zbl0905.11009MR1640469
  31. D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137–1152. Zbl0307.12005MR352049
  32. J. M. Thuswaldner, Elementary properties of canonical number systems in quadratic fields, in: Applications of Fibonacci Numbers, Volume 7, G. E. Bergum et al. (eds.), Kluwer Academic Publishers, Dordrecht (1998), 405–414. Zbl0917.11054MR1638467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.