Counting discriminants of number fields
Henri Cohen[1]; Francisco Diaz y Diaz[1]; Michel Olivier[1]
- [1] Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 3, page 573-593
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCohen, Henri, Diaz y Diaz, Francisco, and Olivier, Michel. "Counting discriminants of number fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 573-593. <http://eudml.org/doc/249645>.
@article{Cohen2006,
abstract = {For each transitive permutation group $G$ on $n$ letters with $n\le 4$, we give without proof results, conjectures, and numerical computations on discriminants of number fields $L$ of degree $n$ over $\mathbb\{Q\}$ such that the Galois group of the Galois closure of $L$ is isomorphic to $G$.},
affiliation = {Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE; Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE; Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE},
author = {Cohen, Henri, Diaz y Diaz, Francisco, Olivier, Michel},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {discriminants of number fields; Galois group; Galois closure},
language = {eng},
number = {3},
pages = {573-593},
publisher = {Université Bordeaux 1},
title = {Counting discriminants of number fields},
url = {http://eudml.org/doc/249645},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Cohen, Henri
AU - Diaz y Diaz, Francisco
AU - Olivier, Michel
TI - Counting discriminants of number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 573
EP - 593
AB - For each transitive permutation group $G$ on $n$ letters with $n\le 4$, we give without proof results, conjectures, and numerical computations on discriminants of number fields $L$ of degree $n$ over $\mathbb{Q}$ such that the Galois group of the Galois closure of $L$ is isomorphic to $G$.
LA - eng
KW - discriminants of number fields; Galois group; Galois closure
UR - http://eudml.org/doc/249645
ER -
References
top- A. Baily, On the density of discriminants of quartic fields. J. reine angew. Math. 315 (1980), 190–210. Zbl0421.12007MR564533
- K. Belabas, A fast algorithm to compute cubic fields. Math. Comp. 66 (1997), 1213–1237. Zbl0882.11070MR1415795
- K. Belabas, On quadratic fields with large -rank. Math. Comp. 73 (2004), 2061–2074. Zbl1051.11055MR2059751
- K. Belabas, M. Bhargava, C. Pomerance, Error estimates for the Davenport–Heilbronn theorems. Preprint available at http://www.math.u-bordeaux1.fr/~belabas/pub/ Zbl1227.11114
- M. Bhargava, Higher Composition Laws I, II, III, IV. Zbl1072.11078
- H. Cohen, A course in computational algebraic number theory (fourth printing). GTM 138, Springer-Verlag, 2000. Zbl0786.11071MR1228206
- H. Cohen, Advanced topics in computational number theory. GTM 193, Springer-Verlag, 2000. Zbl0977.11056MR1728313
- H. Cohen, Comptage exact de discriminants d’extensions abéliennes. J. Th. Nombres Bordeaux 12 (2000), 379–397. Zbl0976.11055
- H. Cohen, Enumerating quartic dihedral extensions of with signatures. Ann. Institut Fourier 53 (2003) 339–377. Zbl1114.11085MR1990000
- H. Cohen, High precision computation of Hardy-Littlewood constants. Preprint available on the author’s web page at the URL http://www.math.u-bordeaux.fr/~cohen.
- H. Cohen, Counting and extensions of number fields with given resolvent cubic, in “High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams”. Fields Institute Comm. 41 (2004), 159–168. Zbl1197.11140
- H. Cohen, Constructing and counting number fields. Proceedings ICM 2002 Beijing vol II, Higher Education Press, China (2002), 129–138. Zbl1042.11067MR1957027
- H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of . Compositio Math. 133 (2002), 65–93. Zbl1050.11104MR1918290
- H. Cohen, F. Diaz y Diaz, M. Olivier, Construction of tables of quartic fields using Kummer theory. Proceedings ANTS IV, Leiden (2000), Lecture Notes in Computer Science 1838, Springer-Verlag, 257–268. Zbl0987.11079MR1850610
- H. Cohen, F. Diaz y Diaz, M. Olivier, Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 72 (2003) 941–951. Zbl1081.11081MR1954977
- H. Cohen, F. Diaz y Diaz, M. Olivier, Densité des discriminants des extensions cycliques de degré premier. C. R. Acad. Sci. Paris 330 (2000), 61–66. Zbl0941.11042MR1745187
- H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree. J. reine angew. Math. 550 (2002), 169–209. Zbl1004.11063MR1925912
- H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields. Indag. Math. (N.S.) 14 (2003), 183–196. Zbl1056.11058MR2026813
- H. Cohn, The density of abelian cubic fields. Proc. Amer. Math. Soc. 5 (1954), 476–477. Zbl0055.26901MR64076
- B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions. J. reine angew. Math. 386 (1988), 116–138. Zbl0632.12007MR936994
- H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields I. Bull. London Math. Soc. 1 (1969), 345–348. Zbl0211.38602MR254010
- H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields II. Proc. Royal. Soc. A 322 (1971), 405–420. Zbl0212.08101MR491593
- H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschrift 31 (1930), 565–582. Zbl56.0167.02MR1545136
- J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants. C. R. Acad. Sci. Paris 340 (2005), 411–414. Zbl1083.11069
- S. Mäki, On the density of abelian number fields. Thesis, Helsinki, 1985. Zbl0566.12001MR791087
- S. Mäki, The conductor density of abelian number fields. J. London Math. Soc. (2) 47 (1993), 18–30. Zbl0727.11041MR1200974
- G. Malle, On the distribution of Galois groups. J. Number Th. 92 (2002), 315–329. Zbl1022.11058MR1884706
- G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129–135. Zbl1099.11065MR2068887
- G. Malle, The totally real primitive number fields of discriminant at most . Proceedings ANTS VII (Berlin), 2006, Springer Lecture Notes in Computer Science XXX. Zbl1143.11371MR2282919
- D. Roberts, Density of cubic field discriminants. Math. Comp. 70 (2001), 1699–1705. Zbl0985.11068MR1836927
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés SMF 1, Société Mathématique de France, 1995. Zbl0880.11001MR1366197
- D. J. Wright, Distribution of discriminants of Abelian extensions. Proc. London Math. Soc. (3) 58 (1989), 17–50. Zbl0628.12006MR969545
- D. J. Wright, personal communication.
- D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions. Invent. Math. 110 (1992), 283–314. Zbl0803.12004MR1185585
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.