A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip
Yuk-Kam Lau[1]
- [1] Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 445-470
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLau, Yuk-Kam. "A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 445-470. <http://eudml.org/doc/249650>.
@article{Lau2006,
abstract = {Let $E_\sigma (T)$ be the error term in the mean square formula of the Riemann zeta-function in the critical strip $1/2<\sigma <1$. It is an analogue of the classical error term $E(T)$. The research of $E(T)$ has a long history but the investigation of $E_\sigma (T)$ is quite new. In particular there is only a few information known about $E_\sigma (T)$ for $3/4<\sigma <1$. As an exploration, we study its mean value $\int _1^TE_\sigma (u)\,du$. In this paper, we give it an Atkinson-type series expansion and explore many of its properties as a function of $T$.},
affiliation = {Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong},
author = {Lau, Yuk-Kam},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {445-470},
publisher = {Université Bordeaux 1},
title = {A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$},
url = {http://eudml.org/doc/249650},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Lau, Yuk-Kam
TI - A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 445
EP - 470
AB - Let $E_\sigma (T)$ be the error term in the mean square formula of the Riemann zeta-function in the critical strip $1/2<\sigma <1$. It is an analogue of the classical error term $E(T)$. The research of $E(T)$ has a long history but the investigation of $E_\sigma (T)$ is quite new. In particular there is only a few information known about $E_\sigma (T)$ for $3/4<\sigma <1$. As an exploration, we study its mean value $\int _1^TE_\sigma (u)\,du$. In this paper, we give it an Atkinson-type series expansion and explore many of its properties as a function of $T$.
LA - eng
UR - http://eudml.org/doc/249650
ER -
References
top- P.M. Bleher, Z. Cheng, F.J. Dyson, J.L. Lebowitz,Distribution of the Error Term for the Number of Lattice Points Inside a Shifted Circle. Comm. Math. Phys. 154 (1993), 433–469. Zbl0781.11038MR1224087
- J.L. Hafner, A. Ivić,On the Mean-Square of the Riemann Zeta-Function on the Critical Line. J. Number Theory 32 (1989), 151–191. Zbl0668.10045MR1002469
- D.R. Heath-Brown,The Distribution and Moments of the Error Term in the Dirichlet Divisor Problem. Acta Arith. 60 (1992), 389–415. Zbl0725.11045MR1159354
- D.R. Heath-Brown, K. Tsang,Sign Changes of , and . J. Number Theory 49 (1994), 73–83. Zbl0810.11046MR1295953
- A. Ivić,The Riemann Zeta-Function. Wiley, New York, 1985. Zbl0556.10026MR792089
- A. Ivić,Mean values of the Riemann zeta function. Lectures on Math. 82, Tata Instit. Fund. Res., Springer, 1991. Zbl0758.11036MR1230387
- A. Ivić, K. Matsumoto,On the error term in the mean square formula for the Riemann zeta-function in the critical strip. Monatsh. Math. 121 (1996), 213–229. Zbl0843.11039MR1383532
- M. Jutila,On the divisor problem for short intervals. Ann. Univ. Turkuensis Ser. A I 186 (1984), 23–30. Zbl0536.10032MR748516
- M. Jutila,Transformation Formulae for Dirichlet Polynomials. J. Number Theory 18 (1984), 135–156. Zbl0533.10034MR741946
- I. Kiuchi,On an exponential sum involving the arithmetical function . Math. J. Okayama Univ. 29 (1987), 193–205. Zbl0643.10032MR936745
- I. Kiuchi, K. Matsumoto,The resemblance of the behaviour of the remainder terms , and . Un Sieve Methods, Exponential Sums, and their Applications in Number Theory, G.R.H. Greaves et al.(eds.), London Math. Soc. LN 237, Cambridge Univ. Press (1997), 255–273. Zbl0933.11043MR1635770
- Y.-K. Lau,On the mean square formula for the Riemann zeta-function on the critical line. Monatsh. Math. 117 (1994), 103–106. Zbl0794.11036MR1266776
- Y.-K. Lau,On the limiting distribution of a generalized divisor problem for the case . Acta Arith. 98 (2001), 229–236. Zbl1059.11056MR1829624
- Y.-K. Lau,On the error term of the mean square formula for the Riemann zeta-function in the critical strip . Acta Arith. 102 (2002), 157–165. Zbl0987.11053MR1889626
- Y.-K. Lau, K.-M. Tsang,-results of the Error Term in the Mean Square Formula of the Riemann Zeta-function in the Critical Strip. Acta Arith. 98 (2001), 53–69. Zbl0972.11078MR1831456
- Y.-K. Lau, K.-M. Tsang,Moments of the probability density functions of error terms in divisor problems. Proc. Amer. Math. Soc. 133 (2005), 1283–1290. Zbl1160.11350MR2111933
- K. Matsumoto,The mean square of the Riemann zeta-function in the critical strip. Japan J. Math. 15 (1989), 1–13. Zbl0684.10035MR1053629
- K. Matsumoto,Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions. In Number Theory, Trends Math., Birhkäuser, Basel, (2000), 241–286. Zbl0959.11036MR1764806
- K. Matsumoto, T. Meurman,The mean square of the Riemann zeta-function in the critical strip III. Acta Arith. 64 (1993), 357–382. Zbl0788.11035MR1234967
- K. Matsumoto, T. Meurman,The mean square of the Riemann zeta-function in the critical strip II. Acta Arith. 68 (1994), 369–382. Zbl0812.11049MR1307453
- T. Meurman,On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford (2) 38 (1987), 337–343. Zbl0624.10032MR907241
- T. Meurman,The mean square of the error term in a generalization of Dirichlet’s divisor problem. Acta Arith. 74 (1996), 351–364. Zbl0848.11043MR1378229
- K.-M. Tsang,Higher power moments of , and . Proc. London Math. Soc. (3) 65 (1992), 65–84. MR1162488
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.